
Nature Genetics  ADVANCE ONLINE PUBLICATION	 �

A rt i c l e s

The extent to which patterns of recombination vary across human 
populations remains uncertain. Increasing evidence has suggested a 
high concordance between populations in large-scale recombination 
rates and more variation between populations in small-scale recom-
bination rates1–5. The lack of high-resolution genome-wide recom-
bination maps for admixed individuals, such as African Americans, 
has limited the possibility of incorporating admixed populations in 
comparative analyses of recombination rates. The development of new 
genome-wide recombination maps is therefore an essential step for 
understanding recombination in admixed populations and enabling 
broader comparative analyses.

Generating new recombination maps has traditionally depended 
on observations of recombination events in pedigrees6. Large-scale 
applications of this approach have been limited to a few samples 
of European descent with unusually detailed genealogic data, such 
as samples from Iceland7,8, Mormons from Utah9 and Hutterites10. 
For example, a recombination map based on inferences from about 
15,000 meioses in the Icelandic pedigree genotyped with nearly 
300,000 SNPs achieved a resolution of recombination rate varia-
tion down to the 10-kb scale8. In contrast, for non-European and 

admixed populations, such as African Americans, the best available 
pedigree-based maps use many fewer meioses and ~1,000 micro-
satellites or less11,12.

Assessment of linkage disequilibrium (LD), or the non-random 
association of alleles on chromosomes, in unrelated individuals pro-
vides a second, more indirect means for inferring recombination 
rates in a population. The advent of high-density, genome-wide SNP 
data has enabled LD-based maps to achieve a resolution of about  
1 kb13,14 and has shown that recombination rates at such fine scales 
are dominated by recombination hotspots. Using LD-based maps in 
analyses of short target regions1–4 and genome-wide SNP data5, com-
parisons between populations have documented some variation in 
small-scale recombination rates but very little variation in large-scale 
recombination rates. LD-based maps, however, conflate the effec-
tive population size and recombination rates, which complicates the 
interpretation of inter-population variation in recombination6. This 
conflation of the effective population size and recombination rate is 
particularly problematic in regions where recent natural selection 
has reduced the effective population size6,15. In addition, care must 
be taken when applying LD-based approaches to recently admixed 
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populations because these methods are based on population genetic 
models of populations at demographic equilibrium1,16.

To address the need for genome-wide recombination maps in 
admixed samples, we report here an ancestry-switch–based method 
for constructing high-resolution genome-wide recombination maps. 
We used this method to infer a recombination map from genotypes 
at >570,000 SNPs in 2,864 admixed African-American and African 
Caribbean individuals. Because of the levels of admixture in this 
sample, we observed approximately 90 ancestry switch points per 
individual, each of which indicates the location of a recombination 
event in the history of the sample; thus, our map is based on roughly 
250,000 unique recombination events. With the inferred map, we 
investigated whether there is evidence for population differentiation 
in recombination rates and to what extent admixture has a global and 
local effect on recombination patterns.

RESULTS
Recently admixed individuals derive their ancestors from two or more 
diverged populations, and thus, their chromosomes are mosaics of 
segments with different origins (Fig. 1). Switch points in ancestry 
along a chromosome mark locations where a recombination event 
occurred between ancestral chromosomes of different origins. In 
principle, ancestry switch-point events will be a random sample of 
all recombination events, and by tallying the location of such events 
across a large number of individuals, we can infer relative rates of 
recombination across the genome.

Our approach for identifying the locations of ancestry switch points 
is based on a previously developed Hidden Markov model (HMM) for 
admixture that matches chromosomal segments of admixed individuals 
to reference haplotypes from the ancestral populations17. To account 

for uncertainty in the locations of ancestry switch points, we imple-
mented an algorithm to compute the probability of an ancestry switch 
between two markers conditional on an individual’s genotype data, 
and we based our inferences on these probabilities (Online Methods). 
Moreover, to pool evidence for recombination across individuals, we 
developed an empirical Bayes approach. Our method produced two 
estimators: (i) the individual-based estimator, cjk

i( ), of the number of 
switches between positions j and k in individual i; and (ii) the sample-
wide estimator, rjk, of the number of ancestry switch events in the 
history of the admixed sample between positions j and k.

Validation of the approach using simulations
To investigate the resolution of this ancestry-switch approach, we 
tested our methods using a series of simulations of a simple model of 
African-American admixture with identical sample sizes and marker 
density to those found in our study sample. An example of the inferred 
number of ancestry switches from a random simulated segment from 
one individual is shown in Figure 2a.

To assess specificity, we investigated 50,000 randomly chosen locations 
more than 1 Mb away from the nearest switch point (Fig. 2b, red line). 
For more than 95% of those 1-Mb windows, the value of cjk

i( ) fell below 
0.025, suggesting that the method produces little false evidence for ances-
try switches where there are none. To assess sensitivity, we computed cjk

i( ) 
for symmetric intervals around isolated ancestry switch points (Fig. 2b, 
black line). If well calibrated, the method should find values of cjk

i( ) equal 
to 1 for these intervals. For intervals of 1 Mb around true switch points, 
we found the median cjk

i( ) to be approximately 1, and when we investi-
gated at what scale the median cjk

i( ) = 0.85, we found it to be at roughly 
the 200-kb scale (Fig. 2b). These results suggest that our method resolves 
single switch points fairly well at the 200-kb scale and above.

Ancestors of variable ancestry
Haplotypes from

population 1

A/G G/G A/T C/C A/C T/G

Haplotypes from
population 2

Sampled admixed individual

a b Figure 1  Sketch of the haplotype-copying Hidden Markov model used 
to detect ancestry switch points. (a) Yellow and blue represent the 
chromosomal segments of different ancestry and the shades of each color 
represent different haplotypes from each ancestry. Recombination creates 
a mosaic of haplotypes regardless of origin but recombination events 
between haplotypes of different ancestries leave signatures that can be 
detected in descendant, admixed individuals. (b) The genotypes observed 
for such an individual form observed states of a Hidden Markov model in 
which underlying states are based on which haplotypes from a reference 
population each allele of the genotype is copied.

Figure 2  Sensitivity and specificity of 
inference. (a) Estimated number of switches 
(cjk

i( )) between neighboring SNPs obtained 
for a simulated individual with two ancestry 
switches (vertical dashed lines). Below, 
the comparison at the 50-kb scale of the 
estimated rates (rjk) and the underlying 
recombination map used to perform the 
simulations for this segment. Both maps are 
normalized to the same total rate. (b) The 
inferred number of switch points (cjk

i( )) as 
function of the size of the interval between 
locations j and k. The black line represents 
the median for symmetric intervals around 
a single, isolated switch point. The red line 
represents the median for intervals with zero 
simulated switch points and which are located 
at least 1 Mb away from the closest switch 
point. Dashed lines mark the 2.5% and 97.5% 
quantiles. (c) Comparison of the inferred rates (rjk) with the true rates across all segments at 10-kb (blue), 50-kb (orange) and 1-Mb (red) scales. 
The 2.5% and 97.5% quantiles are shown with dashed lines. All maps have been normalized to the same total rate for comparison.
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For switch-points close to the ends of 
our simulated segments, we found a con-
sistent bias downwards in the values of cjk

i( ) 
(Supplementary Fig. 1). This bias was to be 
expected, as it is only through analysis of several consecutive mark-
ers that evidence for a switch point can be derived. We thus did not 
attempt to infer recombination rates within 5 Mb of chromosome 
ends or centromeres (Supplementary Note). Finally, as with other 
methods for inferring recombinations, we observed a ‘multiple hits’ 
problem, such that if more than one switch point occurred within a  
1-Mb interval, cjk

i( ) would typically be underestimated. For example, cjk
i( ) 

often takes values close to zero when the actual value is two or takes 
values close to one when the actual value is three (Supplementary 
Fig. 2). This problem is not evident if two switch points are spaced 
more than 1 Mb apart (Supplementary Fig. 1), and thus should not 
be a major problem for analysis of African-American samples, as 
simulations indicate the fraction of switch points with spacing <1 Mb 
is small when admixture has been recent (Supplementary Fig. 2). 
Nonetheless, we developed a refined estimator of recombination,  
rjk, that corrects for the multiple hits problem and, more importantly, 
pools information across individuals in an empirical Bayes framework 
(Online Methods and Supplementary Fig. 3).

To assess how well the estimator rjk performs at inferring recombi-
nation, we estimated maps of relative recombination rates from our 
simulated datasets and compared them to the ‘true’ maps we used to 
simulate the data. The correlation between the true and inferred rates 
was 0.99 at a 1-Mb scale, 0.90 at the 100-kb scale, 0.86 at the 50-kb 
scale and 0.71 at the 10-kb scale (Supplementary Fig. 3). Plots of 
the inferred versus true recombination rates (Fig. 2c) revealed that 
the map produces unbiased estimates of the rates at the 1-Mb and 
50-kb scales, whereas at the smaller 10-kb scale there is evidence of 
a downward bias in the map. Based on these results, we focused the 
presentation of our results on the 1-Mb–scale map to represent large-
scale recombination patterns and on the 50-kb–scale map to represent 
finer scales. Visual inspection of randomly chosen examples at the 
50-kb scale (such as that shown in Fig. 2a) shows that the inferred 
map captures most of the major recombinational features that are 
found in the simulated map.

One potential drawback of either approach we took is a possible 
overestimation of recombination if a large number of switch points 
across individuals descended from the same ancestral event (that is, if 
switch points are inherited in an identical-by-descent manner in the 
sample). Using simulations, we found that under reasonable assump-
tions about the population size of African Americans and African 
Caribbeans, it would be rare for a given ancestry switch to be observed 
twice in our study sample (Supplementary Fig. 4).

Application to an African-American and African-Caribbean sample
We applied our approach to a study sample consisting of 2,565 
African-American and 299 African-Caribbean individuals gathered 
from four studies (GeneSTAR18, GENOA19,20, GRAAD21–23 and 
SARP and CAG-CSGA24; Supplementary Table 1). This sample has 

a mean African-ancestry coefficient of ~0.81 with a 95% quantile 
range of 0.54–0.96 (Supplementary Fig. 5), a broad range that is 
consistent with previous studies of African-American and African-
Caribbean samples25–28. We used as reference panels for the ancestral 
populations the HapMap YRI and HapMap CEU panels. Although 
neither of these panels is an exact representation of the ancestral 
populations of the admixed individuals in the sample used here, 
previous studies17,25 and our own principal component analyses 
(Supplementary Fig. 6) suggest these two panels are reasonable 
proxies for the source populations.

We denote the map we generated as the ‘AfAdm’ map, and we 
compared this map to the recently published deCODE map based 
on Icelandic pedigrees as well as published LD-based maps for the 
HapMap CEU and YRI samples (labeled deCODE, HapMapYRI and 
HapMapCEU, respectively). When comparing the AfAdm map to 
the HapMap-based maps, there is the potential to overestimate the 
similarity between the maps because the HapMap samples served as 
the reference panels for our method. We investigated the potential 
magnitude of this effect through simulations and determined that 
by using a trimmed Pearson correlation coefficient, any possible 
bias as a result of shared data was minimized (Online Methods, 
Supplementary Note and Supplementary Fig. 7). Unless otherwise 
noted, all the correlations reported for scales <1 Mb are trimmed 
Pearson correlations.

At the 1-Mb scale, we found a strong visual concordance and cor-
relations greater than 0.9 among all the maps (Fig. 3a, Table 1 and 
see Supplementary Table 2 for additional scales). This degree of cor-
relation suggests broad-scale similarity of the recombination maps 
across human populations, and that all three methods have the power 
to infer recombination maps well at this scale.

At scales finer than 1 Mb, there was a more coarse correspondence 
between recombination maps (Fig. 3b, Table 1 and Supplementary 
Table 2). For example, at the 50-kb scale, the correlation of the 
AfAdm map with the HapMapCEU map is 0.611 and is 0.697 with 
the HapMapYRI map. The observed decay of correlation at smaller 
observation scales more likely reflects the impact of sampling error 
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Table 1  Correlations between recombination maps
HapMap  

CEU
HapMap  

YRI
HapMap  

80%:20% deCODE AfAdm

HapMap CEU 1.000 0.922 0.951 0.939 0.900

HapMap YRI 0.738 1.000 0.997 0.934 0.922

HapMap 80%:20% 0.844 0.985 1.000 0.948 0.929

Decode 0.789 0.734 0.788 1.000 0.924

AfAdm 0.611 0.697 0.712 0.666 1.000

We report Pearson correlations at the 1-Mb (above diagonal) and 50-kb (below 
diagonal) scales. See Supplementary Table 2 for additional scales.
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than drastic underlying recombination rate differences across sam-
ples. As evidence, we note the correlation between the deCODE and 
HapMapCEU maps is 0.789 at a 50-kb scale (Table 1) even though 
both maps are based on populations of northern European descent.

Investigation of what proportion of the genome contains the high-
est recombination rates provided further evidence for the general 
similarities between the maps. In the AfAdm map, we found that 
recombinations concentrate in a fraction of the sequence (recom-
bination hotspots); for instance, at the 50-kb scale, 10% of the total 
recombinations accumulate in about 1.2% of the genomic sequence 
(Fig. 3c). This level of enrichment in the AfAdm map is similar to 
the level found in the HapMapCEU and the deCODE maps and is 
only slightly higher than in the HapMapYRI map (Fig. 3c). We note 
that because the inferred hottest fraction of the genome likely con-
tains regions whose recombination rates have been overestimated by 
chance, the observed level of enrichment may be upwardly biased 
for each map in ways that depend on the sampling error specific to 
each map’s estimates.

Despite the general similarity of all maps, there is evidence of sub-
tle increases in similarity between recombination maps from more 
closely related populations. For example, the deCODE pedigree 
map correlates more strongly with the HapMapCEU map than the 
HapMapYRI map, whereas the AfAdm map correlates more strongly 
with the HapMapYRI map (Fig. 4a,b). We also observed this pattern 
when investigating recombination hotspot sharing (Fig. 4c,d). The 
overlap between AfAdm and HapMapYRI hotspots is significantly 
higher than the AfAdm overlap with HapMapCEU hotspots (0.32 
compared to 0.23, P = 2 × 10−5 for hotspots defined as the 50-kb 
intervals with the top 1% largest rates). In contrast, deCODE hotspots 
overlap better with HapMapCEU hotspots 
(0.35 compared 0.32, P = 0.0297 on the same 
scale as used in the previous comparison).

Further, the genome-wide European 
ancestry proportion of an individual in 
our sample is positively correlated with the 
fraction of switch points in that individual 
inferred to be in HapMapCEU hotspots  
(r = 0.102, P < 10−8) and negatively cor-
related with the fraction inferred to be in 
HapMapYRI hotspots (r = −0.122, P < 10−10).  
These results corroborate arguments that 
fine-scale recombination rate modifiers 
differ across populations and suggest that, 
because the ancestry in AfAdm individuals 
is predominantly African, our sample has 
recombination patterns that are more like 

the HapMapYRI population. Given these 
results, we attempted an admixture mapping 
approach to identify loci that would explain 
the usage of HapMapYRI as opposed to 
HapMapCEU hotspots. We did not identify 
any significant associations between hotspot 
usage and local ancestry (Supplementary 
Note), but this is likely due to a lack of power 
because of limited sample size and because 
of the limitation that the ancestry switches 
we observed took place across several gen-
erations on varied genotypic backgrounds.

Using a regression-based approach, we 
estimated what proportional weight would 
lead to the observed AfAdm rates if the rates 

are a weighted average of HapMapYRI and HapMapCEU rates. We 
estimated proportional weights of 0.79 at 50-kb, 0.75 at 100-kb and 
0.68 at 1-Mb scales (Supplementary Fig. 8). For completely iden-
tical maps, the estimated proportional weight would be an equal 
weighting of each map, so the trending toward 0.5 observed here 
may be caused by the global similarity of the maps at larger scales 
(Supplementary Fig. 8). We note that this regression-based approach 
may be biased toward the map with the smaller sampling error. Given 
that the two HapMap maps were inferred with the same approach 
from samples of similar size, we did not expect large differences in 
sampling error between the maps. The results thus suggest that the 
AfAdm map can be coarsely approximated as an 80%:20% weighted 
average of the HapMapYRI and HapMapCEU maps. This weighting 
would be expected from the average ancestry coefficient in the sample 
(~80%:20% African:European ancestry).

We next sought to identify intervals where the recombination rate 
differs from an 80%:20% average of the HapMapYRI and HapMapCEU 
maps. The region where the AfAdm map showed the strongest 
deficit in recombination when compared to the other maps lies at 
the centromeric end of a common inversion in 8p23.1 (at ~12 Mb  
on chromosome 8; Fig. 5a)29,30. The same segment has been found, 
using coarser-scale microsatellite-based maps11,12, to be the site of the 
largest map differences in the genome between Europeans and both 
Asians and African Americans. This inversion region is also charac-
terized by several duplications and deletions29–31, which may contrib-
ute to the complexity of the region, and we note that all three methods  
(pedigree, LD-based and admixture-based methods) gave differing 
estimates of recombination rates at the telomeric end of the inversion 
(at ~8 Mb on chromosome 8). This is not the only region with structural  
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variation that appears to differ among the maps. Indeed, four out of 
the top five regions where the AfAdm map showed strong deficits in 
recombination contained large inversions (Table 2). An example of this 
is the region just outside the centromere on chromosome 9 (Fig. 5b), 
which harbors both a small inversion32 and large copy number varia-
tions (CNVs)33. Large inversions do not, however, always affect rate 
estimates in the AfAdm map. For example, the 17q21.31 region har-
bors a large 900-kb inversion with a 20% frequency in Europeans that 
is rarely found in African samples34, but the rate estimates in this 
region do not differ between the maps (Fig. 5c).

Among the regions with the greatest elevation in recombina-
tion rates relative to an 80%:20% average of the HapMapYRI and 
HapMapCEU maps, the pattern observed here is more ambiguous; 
only 11 of the 27 such regions that we investigated harbor structural 
variations (Table 2 and Supplementary Table 3). We found the most 
strikingly elevated recombination rates in the major histocompatibil-
ity complex region (Supplementary Fig. 9), which is known to have 
high levels of genetic diversity and population differentiation35. Using 
quartet families in a subset of the data, we found that this elevation 
in inferred ancestry switches is not concordant with family-based 

recombination rates (see the Discussion section, Supplementary Note 
and Supplementary Fig. 9). We also note two regions with large CNVs 
on chromosome 2 (Supplementary Fig. 10) and 14 (Fig. 5d), each 
consisting of two closely spaced peaks of elevated recombination rates 
flanking regions with an elevated level of European ancestry across 
individuals. In seven regions, the excess in recombination is caused 
by a particularly low rate in the HapMapYRI map (Supplementary 
Table 3). A possible explanation for such regions is selection specific 
to the Yoruban population, which can bias LD-based estimates of 
recombination downwards6,15.

DISCUSSION
We have introduced a method for inferring recombination rates based 
on ancestry switch points. Simulations suggest that this method per-
forms well for the sample size and SNP density of the data that we 
analyzed here. We obtained further support for the method by using 
it to infer a recombination map for African-American and African-
Caribbean individuals (the AfAdm map); this map corresponds well 
to published maps from other populations while also permitting for 
the investigation of fine-scale recombination patterns in admixed 
populations. This ancestry-switch approach should be much less 
sensitive than LD-based methods to local distortions of LD caused 
by natural selection (for example, in selective sweep regions). In an 
ancestry-switch approach, such distortions would arise only when unu-
sually strong selection has occurred in the typically brief period since 
admixture between ancestral populations. The approach also has an 
inherent efficiency in that the number of switch points observed per 
genotyped individual is relatively large. For example, in the African 
Americans and African Caribbeans sampled here, we observed roughly 
90 switch points (recombination events) per genotyped individual 
(Supplementary Note) as opposed to the ~30 such events that are 
expected from genotyping multiple individuals in a pedigree to observe 
an informative meiosis.

A disadvantage of the ancestry-switch approach is that, like LD-
based methods, it does not readily allow one to infer absolute recom-
bination rates or to identify recombination events unique to individual 
parents. Hence, it is not an optimal approach for investigation of vari-
ation in recombination between individuals or sexes. Additionally, 
with the SNP markers considered here, the ancestry-switch method 
resolves events within individuals less precisely (roughly a 200-kb 
scale) than does direct investigation of dense SNP markers in pedi-
grees. The resolution of the ancestry-switch approach will improve 
by using variants that differ in frequency between the populations 
ancestral to admixed groups (Supplementary Fig. 11), and large-scale 
sequencing efforts are expected to identify more of such loci36. With 
the current level of resolution, sampling error is clearly contributing 
to the observed differences and similarities between the maps we 
investigated. For example, we showed that the AfAdm map is more 
like the HapmapYRI map than the HapMapCEU map (Fig. 4), but 
we also found that the HapMapYRI map (and HapMapCEU map) 
correlated better with the deCODE map than the AfAdm map at the 
1-Mb and 50-kb scales (Table 1). This pattern would be expected if 
recombination rates are fairly similar across populations and if the 
AfAdm map has a higher sampling error than the deCODE map, 
both of which are likely true. The AfAdm map is based on ~250,000 
events resolved at a scale of roughly 200 kb each, whereas the deCODE 
map is based on ~600,000 events resolved to a scale of ~10 kb each. 
To circumvent this issue, we used comparisons of the HapMapYRI 
and HapMapCEU maps to the AfAdm map alone (Fig. 4a) and the 
deCODE map alone (Fig. 4b) to investigate population differences 
in recombination rates.

Table 2  Regions for which the AfAdm map differs most from a 
80%:20% average of the HapMapYRI and HapMapCEU maps. 
Regions where the AfAdm map has lower rate estimates are shown 
at top, followed by regions where the AfAdm map has higher rates.
Chr. Positiona Differenceb Structural variations

8 11.4–13.3 −1.93 4.7-Mb inversion29,30

9 37.6–39.5 −1.04 36-kb inversion32/8-Mb CNV33

10 124.9–126.8 −1.00

16 21.7–23.5 −0.89 1.1-Mb inversion39

7 5.1–6.4 −0.87 1-Mb inversion39,41

22 24.5–26.9 1.42 500-kb CNV33,42,43

8 133.8–135.6 1.30

16 81.1–83.0 1.23 1-kb inversion41

22 34.8–36.5 1.23

14 45.9–47.6 1.20 1-Mb CNV42

8 7.2–9.1 1.10 4.7-Mb inversion29,30

18 22.1–23.7 1.04

3 51.4–54.3 1.03 45-kb inversion32,44

14 93.3–95.1 1.03 1-kb inversion45

14 43.2–44.9 1.03 1-Mb CNV46

2 59.8–63.3 1.03 2.9-Mb CNV33

15 67.6–68.9 0.99

5 30.6–32.2 0.99

14 50.9–52.1 0.97

16 64.0–65.4 0.97

6 16.1–18.4 0.96

10 72.5–74.0 0.94 36-kb inversion32/1.2-Mb CNV47

9 6.8–8.1 0.91

8 23.1–24.4 0.88 2.5-Mb CNV33

7 102.7–104.1 0.84

To identify the regions, we identified the top 1% of the intervals with the greatest 
difference between the AfAdm map and the HapMapYRI and HapMapCEU maps 
computed on 1-Mb intervals spaced every 50 kb. We joined intervals whose endpoints 
were not more than 1-Mb apart from each other, and we examined and present here 
only regions supported by at least five intervals. We omitted seven regions where visual 
inspection revealed that the difference was not caused by the AfAdm rate but rather by 
the HapMapYRI rate (Supplementary Table 3). The reported structural variations were 
observed in surveys of structural variations in random samples of European or African 
individuals and were not further than 1-Mb away from the focus regions. In addition, 
CNVs had to be at least 500 kb in length to be included, and we only report here the 
largest CNV in the region. The intervals before collapsing the data are shown in  
Supplementary Figure 10.
aPosition in Mb. bLargest difference per region, given in cM. Negative values imply lower rates 
in the AfAdm map. Chr., chromosome; CNV, copy number variation.
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By comparing the AfAdm map to existing maps, we were able to 
make several observations: (i) there is evidence for subtle population 
differences in recombination rates between African and European 
populations, (ii) African-European admixed individuals appear to 
have recombination rates that are, on average, intermediate between 
the African and European rates, and (iii) the degree to which the 
rates are intermediate is predictable from the average ancestry coef-
ficient (~80% African and ~20% European) in our sample. Further, 
in admixed individuals, recombinations appear to be concentrated 
at hotspots in a manner correlated with ancestry: individuals with 
more African ancestry have recombinations at hotspots found in the 
HapMapYRI map, and individuals with more European ancestry have 
recombinations at hotspots found in the HapMapCEU map. These 
observations are consistent with the differentiation between popula-
tions for fine-scale recombination rates1–5 and with the European-
African differentiation at PRDM9, the only known major locus 
affecting fine-scale recombination rates37.

Because admixed individuals will often be heterozygous at recom-
bination modifier loci for alleles from different ancestral populations, 
the mode of genetic action of modifier alleles that are differentiated 
between populations should mediate observed recombination pat-
terns. For example, among known modifier loci, inversions suppress 
recombination in an underdominant fashion, and PRDM9 alleles may 
act additively37. It is still unknown whether hotspot motifs that inter-
act with PRDM9 are recessive or dominant, although its clear there are 
epistatic interactions between hotspot motif loci and PRDM9 (refs. 
37,38). In our analysis, the AfAdm map appears as one would expect 
if the recombination phenotype were determined predominantly 
by additive factors: the AfAdm map has rates that, on average, are 
intermediate between the HapMapCEU and HapMapYRI rates and 
which are biased toward HapMapYRI rates in a proportion consist-
ent with the average proportion of African ancestry in our sample. 
We speculate that the approximately additive behavior of small-scale 
recombination rates observed here is largely caused by the influence 
of PRDM9 acting additively37 on hotspot motifs that may themselves 
have largely additive effects.

Many of the departures from additive expectations that we found 
fell near other regions known to be exceptional in the genome for 
containing large structural variations. In particular, most regions 
that showed strong deficits in recombination contain inversions. This 
observation suggests the capacity of polymorphic structural variation 
to disrupt local recombination rates may be enhanced in admixed 
individuals, perhaps by elevated heterozygosity. A caveat to these 
results is that SNP genotypes in regions of structural variation are less 
reliable and may confound rates estimated by recombination inference 
methods. In addition, rates may be biased in regions with long-range 
LD and/or high levels of diversity because HMMs are overly simpli-
fied models of such regions39,40. We suspect rates in high-diversity 
regions will more likely be overestimates, as we confirmed in the 
major histocompatibility complex region (Supplementary Note and 
Supplementary Fig. 9).

For future applications, we note that the ancestry-switch method is 
extendible to three-way admixtures and thus can be applied to infer 
recombination maps in other settings, such as for admixed Latino indi-
viduals, who in some cases combine descent from Native-American, 
European and African ancestral populations. Admixture maps might 
be compared to LD-based maps to detect selective sweeps, much like 
how pedigree-based maps have recently been used15. Finally, given 
that the power of the ancestry-switch method is improved by sampling 
additional admixed individuals and that the density of available SNP 
markers is increasing, we speculate that an ancestry-switch approach 

will become an increasingly powerful, scalable tool for fine-scaled 
recombination analysis.

URLs. Novembre group webpage, http://www.eeb.ucla.edu/Faculty/
Novembre/; IMPUTE, https://mathgen.stats.ox.ac.uk/impute/
impute_v2.html; deCODE recombination maps, http://www.decode.
com/addendum/.

Methods
Methods and any associated references are available in the online 
version of the paper at http://www.nature.com/naturegenetics/.

Note: Supplementary information is available on the Nature Genetics website.
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ONLINE METHODS
Samples and genotyping. We inferred relative recombination rates from 
African-descendant admixed samples (predominantly African Americans) 
gathered from four independent projects: GeneSTAR18, GENOA19,20, 
GRAAD21–23, and SARP and CAG-CSGA24. A detailed description of each 
sample is provided in the Supplementary Note. For the recombination rate 
inference, we excluded pedigree-related individuals and obtained a total of 
2,864 unrelated African-American samples. GRAAD is unique in having 
938 individuals sampled from the United States (from Baltimore, Maryland 
and Washington, DC), which we refer to as the GRAADi sample, and 299 
individuals sampled from Barbados, which we refer to as the GRAADii sample. 
When we repeated this inference after excluding all GRAADii samples, the rate 
estimates were largely unchanged (the correlation between estimates without 
and without GRAADii samples were well above 99%, independent of scale; 
Supplementary Note and Supplementary Fig. 12).

The samples were typed on the Illumina Human1M-Duo (SARP and 
CAG-CSGA), Illumina Human 1Mv1C (GeneSTAR), Illumina Human650Y 
(GRAAD) and Affymetrix 6.0 (GENOA) platforms. Because they differ in 
the set of available SNPs and there are concerns about merging data, we took 
several steps to make sure to conservatively merge the data, in particular 
attempting to avoid allele strand flip issues (Supplementary Note and 
Supplementary Fig. 13).

Reference panels. In line with previous reports25, we found in explora-
tory principal component analysis plots that our admixed sample stratifies 
between the African (YRI) and European (CEU) populations from HapMap3 
(Supplementary Fig. 6). In our analysis, we thus used 234 and 230 phased 
haplotypes from the CEU and YRI samples, respectively, available from the 
HapMap project (Supplementary Note).

Simulations for validation. We generated a total of 120 Mb of data, consist-
ing of 6-Mb segments randomly chosen from each of the chromosomes 1 
through 20. For each of those segments, we simulated a model widely used 
in the population genetic literature for African Americans (for example, see 
refs. 48–50): a diploid, randomly mating population of 20,000 individuals  
followed forward in time for seven non-overlapping generations, where the first 
generation was 80% African and 20% European individuals. Recombination 
events were placed along the segments following a 50%:50% average of the 
HapMapCEU and HapMapYRI maps. Founder haplotypes were generated 
using MACS51 and assumed a demographic model previously proposed52, 
with recombination following the same map as used above. The resulting SNPs 
were sub-sampled to match the corresponding SNP densities among our sam-
ples and the frequency spectra of the CEU and YRI HapMap samples. We 
also selected 230 and 234 phased haplotypes randomly from the African and 
European samples, respectively, to serve as reference panels. For investigating 
reference panel bias, we inferred recombination maps from the pattern of LD 
present in the reference panels using LDhat16. See the Supplementary Note 
for more information.

Inference of ancestry switch points and relative recombination rates. 
Our initial approach was based on summing the posterior mean number of 
ancestry switch events across individuals. For an interval on the chromo-
some between SNP markers j and k, define c jk

i( ) as a variable that takes on the 
values 0, 1 or 2 depending on whether there is an ancestry switch on neither, 
one or both chromosomes between markers j and k. Given genotype data 
for individual i (D(i)), a set of reference haplotypes from two source popula-
tions (H) and admixture parameters (θ, for example, time since admixture),  
the posterior mean of c jk

i( ), (that is, E c D Hjk
i i[ | , , ]( ) ( ) q , which we denote cjk

i( )) can 
be computed under probabilistic models of admixture. Here we developed 
algorithms for computing cjk

i( ) using the HMM-based models for admixture 
introduced in a previous study17 (Supplementary Note). Our first estimator 
of a relative recombination rate between markers j and k then is:
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where N is the number of sampled individuals.

Although straightforward, this approach computes cjk
i( ) based only on informa-

tion on that single individual, and as in many statistical inference problems, 
power can be gained by pooling information across individuals. In addition, 
this approach does not account for ‘multiple hits’. For example, if an even 
number of ancestry switch events takes place between markers j and k on both 
chromosomes, c jk

i( ) will be 0, despite the unobserved ancestry switch events. 
By simulation, we found that both of these factors hinder this method from 
accurate inference in regions of high recombination.

To improve upon this method, we developed a post-processing step that 
reframes the inference in an empirical Bayes framework and corrects for the 
multiple hits problem. Define s jk

i( ) as the number of switch events between 
markers j and k (which takes values in {0,1,2,3,…}). Because cjk

i( ) is a highly 
informative summary statistic of an individual’s genotype data, we can perform 
inference on s jk

i( ) based on cjk
i( ) rather than the original data D. Specifically, we 
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The likelihood p s dcjk
i

jk
i( | )( ) ( ) =  is difficult to obtain analytically, and so we 

approximated its value using simulations (Supplementary Note). Pooling of 
information across individuals enters by an empirical Bayes approach in which 
we set the prior p s djk

i( )( ) =  according to an initial estimator based on the same 
data. In this case, we set p s d cjk

i
jk( )( ) = ∝  (Supplementary Note). The posterior 

expectation on the total number of switch points across all N individuals (Sjk) 
is then given by
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Although this approach does not detect recombination events between chro-
mosomal segments of similar ancestry, the number of ancestry switch events 
is expected to be proportional to the recombination rate in the region, and so 
we use rjk as a relative rate estimator of recombination.

Simulations show our empirical Bayes method results in substantially 
improved estimates of relative recombination rates (Supplementary Fig. 3), 
and hence, we present results only for the empirical Bayes approach.

The computations giving rise to the inferred rjk require assumptions about 
several parameters of the HMM, such as the time since admixture and the 
population miscopying rate (Supplementary Note). The results shown are 
for a set of parameters previously suggested17 for African-American samples 
(Supplementary Table 4). We also investigated whether alternative parameters 
would result in improved performance, but found that the suggested param-
eters worked as well as or better than reasonable alternatives (Supplementary 
Note and Supplementary Fig. 14).

Accommodating disparate marker intervals and construction of recombi-
nation maps. In the above presentation, we ignored that not all individuals 
have markers genotyped on the same intervals. To address this, if we are esti-
mating recombination in an interval between markers at physical coordinates 
e and f, we take the convention of replacing cjk

i( ) with
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where the sum runs over all L markers typed in individual i, and αe f, j is the 
proportional overlap between the interval [e, f] and the interval defined by 
markers j and j + 1 (that is, αe f , j ∈ [0, 1]). This adjustment to cjk

i( )  is a form 
of linear interpolation.

We generated maps with constant interval sizes of 10 kb, 15 kb, 20 kb,  
33 kb, 50 kb, 75 kb, 100 kb, 150 kb, 200 kb, 250 kb, 333 kb, 500 kb, 750 kb,  
1 Mb and 3 Mb. Whereas we used non-overlapping intervals to compute all 
reported metrics (such as correlations), we used maps where the midpoints 
of the intervals were always shifted by 5% of the interval size to find intervals 
with largest differences between maps and for plotting. In addition, for plot-
ting, we scaled the map so that the total length of our map corresponded to a 

(1)(1)

(2)(2)

(3)(3)
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rate of 1.04 cM/Mb (in line with the total length of the sex-averaged map from  
ref. 8). The inferred recombination maps are available on the Novembre group 
webpage (see URLs).

Comparison to existing recombination maps. We compared the recombination 
map inferred from the African-American and African-Caribbean dataset to four 
existing, fine-scaled recombination maps. The HapMapCEU and HapMapYRI 
maps, two widely used maps based on patterns of LD in HapMap populations, 
were obtained from the IMPUTE website53 (see URLs). We also downloaded 
the pedigree-based deCODE map8 (see URLs). For all these maps, we recom-
puted maps of various interval sizes matching those maps generated from our 
African-American samples by interpolation. Further, we discarded the first  
5 Mb on each telomeric end of every chromosome and all centromeric loca-
tions (Supplementary Note). Intervals overlapping unsequenced regions of the 
human reference genome were discarded following previous studies8. Note that 
the intervals of our non-overlapping 10-kb map precisely match those of the 
deCODE map. Correlation figures between maps are based on Pearson’s correla-
tion coefficients. To avoid bias when comparing published maps at scales below  
1 Mb, we trimmed the 20% intervals with lowest estimated rates because we found 
the estimation errors of the LD maps and the switch-point–based map to be 
correlated at small scales (Supplementary Note and Supplementary Fig. 7).

Analsyis of AfAdm maps as a weighted average of the HapmapYRI and 
HapMapCEU maps. Let A, Y and C represent the AfAdm, HapMapYRI and 
HapMapCEU rates within an interval. We fit a model in which A is a convex 
linear combination of the Y and C maps: A = aY + (1 − a)C. To estimate a, note that 
we can subtract C from both sides to obtain (A − C) = a(Y − C) and, hence, use a 
linear regression of (A − C) on (Y − C) to estimate a. For the regression approach 
to compare the AfAdm map with the HapMapCEU and HapMapYRI maps, we 
computed robust regressions with the rlm function in the MASS package in R.
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