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SIMCOAL: A General
Coalescent Program for the
Simulation of Molecular Data
in Interconnected
Populations With Arbitrary
Demography

L. Excoffier, J. Novembre, and
S. Schneider

SIMCOAL (version 1.0) is a computer pro-
gram for the simulation of molecular ge-
netic diversity in an arbitrary number of
haploid populations examined for a set of
fully linked loci. It is based on the retro-
spective coalescent approach initially de-
scribed by Kingman (1982a,b), and clearly
exposed in a series of other articles (Don-
nelly and Tavaré 1995; Ewens 1990; Hud-
son 1990). The coalescent backward ap-
proach does not simulate the genetic
history of the whole population, like in
conventional forward simulations, but
rather reconstructs the gene genealogy
(coalescent history) of samples of genes
drawn from different demes in a popula-
tion. For neutral genes, this coalescent
process essentially depends on the histo-
ry and on the demography of the popula-
tion, and is independent from the muta-
tional process. In our program, we
simulate mutations starting from the most
recent common ancestor (MRCA) of all
genes in the sample, and add them inde-
pendently on all branches of the genealo-
gy assuming a uniform and constant Pois-
son process. Using this two-step
(coalescent-mutation) approach, many
replicates of haploid samples of DNA se-
quences, RFLP, or microsatellite data can
be simulated very quickly. The analysis of
a large number of simulated samples al-
lows one to obtain the empirical distribu-
tion of practically any statistic that can be
derived from genetic data, including statis-
tics for which no analytical derivation is

available (Hudson 1993). Typical applica-
tions of our program include the study of
the effect of complex demographies on the
pattern of genetic diversity within and be-
tween populations, like in the case of bot-
tlenecks, complex cases of admixture, or
metapopulation systems. While our pro-
gram generates haploid samples of genes
or haplotypes, diploid data can be gener-
ated under the hypothesis of Hardy–Wein-
berg equilibrium by taking random pairs
of haplotypes to form diploid genotypes.
The program runs on PC-compatible com-
puters under Windows 95/98/NT, but we
provide the C�� source code that should
compile under other operating systems,
provided the compiler follows the latest
C�� ISO committee specifications. It is
freely available on the website at http://
anthropologie.unige.ch/�laurent/simcoal.

Principle of the Simulation
Algorithm

The coalescent algorithm we have imple-
mented is inspired from that described in
Hudson (1990), but it is based on a gen-
eration-by-generation approach instead of
a continuous time approximation. We start
from a given sample of genes that are
found in one or more demes connected by
an arbitrary pattern of migrations.

We first simulate the gene genealogy of
the sample, independently from the mu-
tational process, going backward one gen-
eration at a time. At each generation we
first look for the occurrence of what we
call an ‘‘historical event.’’ Historical
events are fully defined in the input file
(see below) and allow one to implement,
at any generation, a population fission,
massive migration, rescaling of deme size,
a change of population growth pattern,
and/or modification to the pattern of mi-
grations between populations. Second, we
implement a phase of migration according
to a predefined migration matrix between
populations. Third, we check for potential

coalescent events within each deme. In
each deme, the probability of a coalescent
event is given by i(t)[i(t) � 1]/[2N(t)]
(Kingman 1982a), where i(t) is the number
of gene lineages remaining in a deme at
time t, and N(t) is the total number of gene
copies in a deme at time t. N can either
remain stationary, vary exponentially from
generation to generation, or drastically
change after an historical event. Only one
coalescent event is allowed per deme per
generation, which is a very good approxi-
mation if N is much larger than i. If a co-
alescent event happens, two lineages of
the deme are chosen at random to coa-
lesce. We record the coalescence time and
which lineages have coalesced. Finally, we
resize the deme size according to the pre-
defined pattern of demographic growth.
The coalescence and deme size rescaling
are performed independently in each
deme before going to the previous gener-
ation, and restarting the four steps defined
above. The process is carried out back-
ward in time until all gene lineages have
coalesced into a single lineage. The real-
ized gene genealogy can be seen as a bi-
nary tree, with terminal nodes being the
initial sampled genes, internal nodes being
the result of the coalescence of lineages,
and a root node being the MRCA of the
sample.

Once a genealogy is obtained, we imple-
ment the mutational process. We recur-
sively explore the binary tree, starting
from the root node, and randomly assign
mutations to each branch of the tree ac-
cording to a Poisson distribution with pa-
rameter � tj , where � is the mutation rate
per generation and per locus, and tj is the
length (in generations) of the jth branch.
The impact of these mutations will depend
on the mutation model and the type of
data to simulate, which can either be DNA
sequences, RFLP haplotypes, or a series of
fully linked microsatellite loci. Before add-
ing the simulated mutations on the tree,
we assign arbitrary initial states to the an-
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cestral gene at the root node. For each
branch of the tree we then recursively as-
sign mutations to particular sites or loci.
Each site can therefore be hit several
times (finite sites model) in the history of
the sample. We describe below in more de-
tails the particularities of the mutation
models we have implemented for each
data type.

Output Files

The final state of each gene is recorded
and output to several files according to
two data formats. The first format is com-
patible with the Arlequin program
(Schneider et al. 2000). The data generat-
ed after each simulation are output to a
separate Arlequin project file. An Arlequin
batch file is also created, listing all simu-
lated files, and allowing one to compute
different statistics on the whole set of sim-
ulated files with Arlequin, and thus to ob-
tain their distribution after extraction
from the Arlequin output files. We provide
a complete example of such analysis on
our website (http://anthropologie.unige.
ch/�laurent/simcoal). Two other sets of
output files are compatible with the NEX-
US file format. The firs set includes two
files with the ‘‘*.trees’’ extension that list
all the simulated trees, with branch
lengths expressed either in units of gen-
erations scaled by the population size (N),
and therefore representing the true coa-
lescent history of the sample of genes, or
in units of average number of substitu-
tions per site, and therefore representing
the realized mutational tree. These two
sets of trees can, for instance, be visual-
ized with the software TREEVIEW (Page
1996). Second, the other set includes a sin-
gle file with the ‘‘*.paup’’ extension. It lists
all the simulated genes together with their
true genealogic structure. This file can be
analyzed with David Swofford’s PAUP*
software (1999).

Mutation Models

RFLP Data
Only a pure two-allele model is imple-
mented. Several fully linked RFLP loci can
be simulated, assuming a homogeneous
mutational process over all loci. A finite-
sites model is used, and mutations can hit
the same site several times, switching the
RFLP site on and off. We thus assume that
there is the same probability for a site loss
or for a site gain.

Microsatellite Data
We have implemented a pure stepwise mu-
tation model (SMM) with or without con-
straints on the total size of the microsat-
ellite. Several fully linked microsatellite
loci can be simulated under the same mu-
tation model constraints.

DNA Sequence Data
We have implemented here several simple
finite-sites mutational models. The user
can specify the percentage of substitu-
tions that are transitions (the transition
bias), the amount of heterogeneity in mu-
tation rates along a DNA sequence accord-
ing to either a discrete or continuous gam-
ma distribution. We can therefore simulate
DNA sequences under a Jukes and Cantor
(1969) model or under a Kimura (1980)
two-parameter model, with or without
gamma correction for heterogeneity of
mutation rates (Jin and Nei 1990). Other
mutation models that depend on the nu-
cleotide composition of the sequence
were not considered here because of their
complexity and because they require
specifying many additional parameters,
like the mutation transition matrix and the
equilibrium nucleotide composition.

Demographic Models

There is no limitation on sample sizes,
deme sizes, or number of simulated
demes, other than the available memory
in the computer and the computational
time. Deme sizes should nevertheless al-
ways be much larger than the sample siz-
es for the single coalescent event per gen-
eration assumption to hold. Each sample
of gene is assumed to be drawn from a
different deme that can exchange an arbi-
trary number of migrants with other
demes at any generation. As the migration
rates are specified by a migration matrix
of size equal to the number of simulated
demes, either an island model, a one-di-
mensional, or a two dimensional stepping-
stone model can be simulated, with demes
arranged on a flat surface, a cylinder, or a
torus. Several migration matrixes can be
specified in the input file, so that any ma-
trix can be used at any time in the simu-
lation process. The history of several com-
pletely separated demes can also be
simulated, as in the case of a series of pop-
ulation fissions or admixtures. Historical
events can be defined to specify which pa-
rental populations are used to produce
daughter populations after a fission event,
as well as its timing. Note that the pro-
gram can also be used to simulate the ge-

netic divergence of different species, with
or without bottlenecks. The size of each
deme can either remain stationary over
time or can change exponentially, sepa-
rately in each population. Positive or neg-
ative exponential growths can be mod-
eled. Historical events can be used to
instantaneously modify the size of a deme
or to alter its exponential growth pattern
at any generation in the past.

Input File

A single input file is needed for the simu-
lation. It should specify the number of
gene samples to simulate, the sample siz-
es, the deme sizes, the exponential growth
rate of each deme, the number of linked
loci to simulate, and the overall mutation
rate for all simulated loci. One can also
include a series of historical events that
can be used to resize a deme; implement
an episode of migration from a source to
a sink deme (for instance to simulate a
population splitting into two subpopula-
tions); reset the exponential growth rate
of a given deme; or switch from a given
migration matrix to another one. Note that
several historical events can happen in
the same generation. The data type (RFLP,
microsatellite, or DNA) must also be spec-
ified in the input file. For DNA data, the
proportion of substitutions being transi-
tions must be specified to set a given tran-
sition bias, as well as the amount of rate
heterogeneity among sites, which can be
done by setting the alpha parameter of a
gamma distribution. For microsatellite
data, the potential size range constraint
must also be provided. Additional infor-
mation on the syntax of the input files can
be found on the website mentioned above.

General Considerations

The simulations are usually very fast, al-
lowing one to perform thousands of sim-
ulations in a reasonable amount of time.
For instance, generating 1000 samples of
20 sequences of 300 bp in 20 demes under
an island model (Nm � 0.5; �intrademe � 2N�
� 1, where m is the migration rate be-
tween demes, � is the mutation rate for
300 bp, and N � 1000 genes per deme)
takes about 39 min 30 s on a 400 MHz PC.
Generating the same samples with a larger
migration rate (Nm � 10) takes 34 min 15
s. Finally, generating 1000 samples of 400
sequences of 300 bp takes only 2 min in a
single population of size 20,000, and 2 min
12 s in a single population of size 40,000.
The execution time thus depends primar-
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ily on the size of the demes and the over-
all migration pattern, which will affect the
total number of generations to simulate
before reaching the MRCA of all sampled
genes. In the absence of migration (as in
a single population) the simulations are
much faster for each generation because
we do not need to check each remaining
lineage to decide if it migrates or not. Oth-
er factors, like an exponential growth rate,
the mutation model, the mutation rate, or
the heterogeneity of mutation rates for
DNA sequences have less effect on the to-
tal execution time. Note, however, that a
program based on a continuous time ap-
proximation, as described in Hudson
(1990) would be much faster, but it would
be very difficult to make it as general as
the present one. In most instances, our ex-
perience tells us that it takes far more
time to analyze the simulated data than to
generate them.

We have checked for simple cases that
our simulations lead to expected results
regarding coalescence times. We give here
just two simple examples. We first simu-
lated a sample of two genes drawn from a
haploid population of size 10,000. Over
50,000 replicates, the mean coalescence
time and its standard error were found to
be 10,007 and 9983, respectively, in very
close agreement with the expected value
of 10,000 generations for both parameters.
We also simulated two samples of five
genes drawn from two haploid popula-
tions of size 1000 that exchange migrants
at a rate of 0.0001. Over 50,000 replicates,
the average coalescent times of genes
within and between populations were
found equal to 1992 and 6999, in close
agreement with their expected values of
2000 and 7000, respectively (see Slatkin
1991:170). The accuracy of the simulation
of the DNA mutation models can be seen
in Table 3 of Excoffier and Yang (1999),
where we have simulated a Kimura two-
parameter model assuming a gamma dis-
tribution of mutation rates (� � 0.26 and
� � 0.40) and 10 times more transitions
than transversions (� � 20). These param-
eters were correctly estimated from sim-
ulated data with maximum likelihood
methods when the overall divergence of
the simulated sequences was large. Note
that the estimated mutation parameters
were biased for short divergence times be-
tween sequences, which was due to the
inefficiency of maximum likelihood meth-
ods in that case (Excoffier and Yang 1999).

Even though our simulation program is
designed to simulate haploid data, it could
be used to simulate diploid data under the

hypothesis of Hardy–Weinberg equilibri-
um, by grouping pairs of haplotypes to
form diploid genotypes. However, because
we simulate haploid migrants, it would not
be safe to use our program to simulate
high levels of gene flow with diploid mi-
grants, where one could expect comigra-
tion of lineages during the simulated pe-
riod. Our program has been used
extensively over the last few years for a
variety of problems, like checking the va-
lidity of molecular estimators of admixture
(Bertorelle and Excoffier 1998), checking
our ability to estimate heterogeneity of
mutation rates for human and chimpanzee
mtDNA (Excoffier and Yang 1999), study-
ing population divergence with bottle-
necks (Gaggiotti and Excoffier 2000), or
studying the effect of genetic barriers be-
tween geographically structured groups of
demes (Dupanloup de Ceunink et al.
2000). We have not yet explored all the po-
tential of the program, but we think its
versatility will be valuable to other re-
searchers for getting expectations and dis-
tribution of different statistics in complex
demographic models, or to check by fast
simulation the behavior of new parameter
estimators. The SIMCOAL program is free-
ly available at http://anthropologie.unige.
ch/�laurent/simcoal.

An Applied Example: Human-
Chimpanzee Divergence

SIMCOAL was used to get empirical con-
fidence intervals around estimated param-
eters of human-chimpanzee divergence in
a recent article (Gaggiotti and Excoffier
2000). A new method was developed to es-
timate divergence times between popula-
tions of unequal sizes from the mean num-
ber of pairwise differences within and
between populations [more details can be
found in Gaggiotti and Excoffier (2000)].
The parameters we estimated from the
molecular diversity found among 2996 hu-
man and 222 chimpanzee (Pan troglodytes)
mitochondrial DNA sequences of 277 bp
were the following: (1) divergence time T
� 2�t � 48.47; (2) size of the ancestral
population �0 � 2N0� � 32.04; (3) relative
sizes of the chimpanzee and human pop-
ulations (compared to the ancestral pop-
ulation) being k � 0.80 and 1 � k � 0.20,
respectively. From these parameters, we
estimated the mutation rate for the whole
sequence assuming an effective popula-
tion size of approximately 5000 females for
humans (e.g., Vigilant et al. 1989) as � �
�0/(2N0) � 48.47/50,000 � 6.4 	 10�4. The
time of divergence between humans and

chimps was then obtained as t � T/(2�)
� 37,867 generations. We therefore took
those parameters to simulate the genetic
diversity of 2996 human and that of 222
chimpanzee sequences in 1000 replicates
from which new estimates of �0, T, and k
were each time obtained. The 2.5 and 97.5
percentile values of the three empirical
distributions were then used as approxi-
mate limits of 95% confidence intervals
around the estimated parameters.
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eng Yang and Alan Rogers for providing us with source
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variates, respectively. This work was made possible by
Swiss National Science Foundation grant no. 31-
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SPAM (Version 3.2):
Statistics Program for
Analyzing Mixtures

E. M. Debevec, R. B. Gates, M.
Masuda, J. Pella, J. Reynolds, and
L. W. Seeb

A number of recent studies have ad-
dressed individual identification and pop-
ulation-specific discrimination of individ-
uals (e.g., Banks and Eichert 2000;
McParland et al. 1999; Olsen et al. 2000;
Shriver et al. 1997). However, often the pri-
mary interest is the relative contributions
of distinct population segments in an ad-
mixture of organisms. This coarser focus
is particularly relevant in complex mix-
tures with multiple contributors and ap-
plications where differentiation among
populations is not sufficient for individual
identification. Such mixed population
analysis has been applied extensively in
the Pacific Northwest and Alaska, where
local salmon populations may spawn in
separate freshwater streams but are har-
vested together in salt- or freshwater fish-
eries (e.g., Scribner et al. 1998; Seeb and
Crane 1999). The statistical theory devel-
oped to estimate the contributions of dis-
crete populations or stocks in a mixture is
commonly called mixed stock analysis
(MSA) or genetic stock identification (GSI)
in the fisheries literature (Fournier et al.
1984; Millar 1987; Pella and Milner 1987).
This approach has also been utilized as an
introgression index to calculate the per-
centage of genes from source or parental

populations (e.g., Planes and Doherty
1997).

The first step in performing mixture
analyses is to assemble a baseline of ge-
notypic and/or phenotypic characteristics
for all populations present in the mixture.
The mixture is then randomly sampled
and the same suite of characteristics is
measured for each individual in the sam-
ple. The maximum likelihood contribution
estimates for the baseline populations are
the unique mixture proportions that lead
to the greatest likelihood of obtaining a
mixture sample with the observed set of
characters.

The Statistics Program for Analyzing
Mixtures (SPAM) is a software tool for
computing the maximum likelihood esti-
mates for a mixed population or stock
analysis. SPAM has two basic modes of op-
eration. Estimation mode uses baseline
and mixture information to estimate stock
contributions and their associated mea-
sures of precision. Simulation mode uses
baseline information to generate hypo-
thetical mixtures with known contribu-
tions to assess baseline potential. SPAM
provides a common framework for imple-
menting all aspects of a mixed stock anal-
ysis within the Windows 95/98 operating
system. The use of ASCII files for all input
and output is facilitated by the SPAM ses-
sion environment which monitors analysis
progress and allows for editing and/or
viewing any of its associated files.

Although originally developed for loci
such as allozymes displaying relatively
low variability, SPAM can be used with
highly variable loci such as microsatel-
lites. Because SPAM calculates genotype
probabilities across multiple loci, proba-
bilities can become exceedingly small with
many highly variable loci. Smouse and
Chevillon (1998) reviewed the analytical
aspects of population-specific discrimina-
tion for individuals and concluded a mod-
est number of codominant loci, each with
a small number of alleles and each allele
in moderate frequency, provide the high-
est potential discriminatory power.

SPAM requires two or more ASCII input
files for analyses. Detailed formatting in-
structions for each input file is provided
in the SPAM documentation. Baseline files
describe the genetic and/or phenotypic
makeup of each population potentially in
the mixture. Three character types can be
used: PHENOTYPE or MTDNA, with one
response per individual; LOCUS, with two
responses per individual; or ISOLOCUS,
with four responses per individual. Isoloci,
resulting from a duplication event, share

alleles with identical electrophoretic mo-
bility (Allendorf and Thorgaard 1984), and
are expected to include four gene doses
per individual. No assumptions concern-
ing inheritance are made. Isolocus data
are treated as equal frequencies at two di-
somic loci, equivalent to equal frequen-
cies at a single tetrasomic locus. Baseline
populations can be described with either
relative or absolute frequencies for each
character.

Estimation mode requires a mixture file
providing character data of the individuals
in the mixture sample. The mixture sam-
ple is assumed to be representative of the
true mixture. SPAM can select a subset of
all characters described in the baseline
and mixture files for use in an analysis,
eliminating the need to create multiple in-
put files for a reduced set of characters. A
control file is used in every SPAM analysis
to define input and output options, as well
as to set parameters used in the maximum
likelihood search for contribution esti-
mates.

SPAM searches for maximum likelihood
estimates of population proportions using
three numerical algorithms: conjugate gra-
dient (CG), iteratively reweighted least
squares ( IRLS), and expectation-maximi-
zation (EM). A detailed description of
these algorithms can be found in Masuda
et al. (1991) and Pella et al. (1996). Stan-
dard error estimates are available from ei-
ther the infinitesimal jackknife or boot-
strap resampling. Confidence intervals can
be calculated using bootstrap resampling
of just the mixture, just the baseline, or
both. Estimates, standard errors, and con-
fidence intervals can be requested for
user-defined population aggregates to im-
prove the accuracy of estimates by pool-
ing populations that are genetically indis-
tinguishable (Wood et al. 1987).

Primary results from SPAM are output in
either an estimation file or a simulation
file. Other output files can be requested,
including bootstrap summaries, baseline
and mixture summaries, conditional ge-
notype and population probabilities, and
population contribution estimates for
each resample.

SPAM provides a convenient Windows
environment from which the user can edit
input files, perform analyses, and view
output files. Every analysis produces a
child window that monitors progress and
reports the creation of output files. When
an analysis is complete, the user can se-
lect an output file for viewing from the Re-
sults menu. The selected file is opened in
an external text editor chosen by the user,
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or in the default Notepad text editor. SPAM
analyses can be run one at a time or in
batch mode by selecting multiple control
files for submission. Complete details are
provided in the full SPAM documentation.
Associated input ASCII files can be created
in any text editor or generated using other
software.

SPAM can be obtained free of charge
from the Gene Conservation Laboratory,
Alaska Department of Fish and Game. A
zipped file containing the executable pro-
gram, sample files, and complete docu-
mentation can be downloaded from the
website at http://www.cf.adfg.state.ak.us/
geninfo/research/genetics/Software/
SpamPage.htm. Alternatively, requests can
be made by e-mail to Joel�Reynolds@
fishgame.state.ak.us.
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partment of Fish and Game, Commercial Fisheries Di-
vision, Juneau, Alaska. Address correspondence to Lisa
W. Seeb at the address above.
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