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Estimating dispersal distances from population genetic data provides an important alternative to logistically taxing methods for

directly observing dispersal. Although methods for estimating dispersal rates between a modest number of discrete demes are

well developed, methods of inference applicable to “isolation-by-distance” models are much less established. Here, we present

a method for estimating ρσ2, the product of population density (ρ) and the variance of the dispersal displacement distribution

(σ2). The method is based on the assumption that low-frequency alleles are identical by descent. Hence, the extent of geographic

clustering of such alleles, relative to their frequency in the population, provides information about ρσ2. We show that a novel

likelihood-based method can infer this composite parameter with a modest bias in a lattice model of isolation-by-distance. For

calculating the likelihood, we use an importance sampling approach to average over the unobserved intraallelic genealogies, where

the intraallelic genealogies are modeled as a pure birth process. The approach also leads to a likelihood-ratio test of isotropy of

dispersal, that is, whether dispersal distances on two axes are different. We test the performance of our methods using simulations

of new mutations in a lattice model and illustrate its use with a dataset from Arabidopsis thaliana.

KEY WORDS: Dispersal, importance sampling, intraallelic genealogy, isolation-by-distance, likelihood, low-frequency alleles.

Patterns of dispersal have long been recognized as important for

evolutionary and ecological dynamics. Nevertheless, accurately

quantifying patterns of dispersal via direct observation is difficult

in most systems. Instead, patterns of genetic variation can be used

to obtain indirect estimates of dispersal tendencies (Slatkin 1987).

For models in which individuals are in distinct demes, a variety

of indirect methods are available, for example, cladistic methods

(Slatkin and Maddison 1989; Excoffier et al. 1992) and likelihood-

based methods (Rannala and Hartigan 1995; Tufto et al. 1996;

Beerli and Felsenstein 2001; Nielsen and Wakeley 2001; Iorio

et al. 2005; Hey and Nielsen 2007).

In comparison, methods for estimating dispersal in continu-

ous isolation-by-distance (CIBD) models are less well developed.

In CIBD models, individuals are distributed across a continu-

ous habitat and mate preferentially with nearby individuals. If an

individual is born at a location (x0, y0) then the probability dis-

tribution of the location where it leaves its offspring is assumed

to be a continuous distribution that is time invariant, identical for

every individual, and of the form k(x − x0, y − y0) where k(·, ·)
is a bivariate distribution, such as a Gaussian distribution with

zero mean, variances σ2
x and σ2

y , and zero covariance. The stan-

dard deviations σx and σy are measures of the single-generation
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dispersal distance (but see Rousset 2004 for discussion of how

this value should be interpreted). If σ2
x = σ2

y , this parameterization

implies dispersal is isotropic; in these cases, σ2 is often defined

such that σ2 = σ2
x = σ2

y . Finally, to avoid the formation of unreal-

istic spatial clumps of individuals (Felsenstein 1975), population

density is typically constrained to be uniform across the habitat.

One approach to imposing density regulation is to assume each

individual occupies a single node on a large lattice. The resulting

models are parameterized by σ2 and ρ, the density of the pop-

ulation, although in most cases only the joint parameter ρσ2 is

identifiable.

Various methods for estimating dispersal in CIBD models

have been previously proposed, many of which are moment-

based. Rousset (1997, 2000) estimate the product ρσ2 by re-

gressing pairwise estimates of F-statistics on geographic dis-

tance. Although this method has been shown to be robust to

various violations of the model assumptions (Leblois et al. 2003,

2004), one limitation is that linearity of the regression holds only

over a limited, intermediate range of geographic distances that is

not known prior to the study. Another moment-based estimator

is that of Neigel et al. (1991), which estimates σ2 by assess-

ing the geographic dispersion of mtDNA haplotypes relative to

their estimated time of most recent common ancestor (TMRCA).

The method has the advantage of being independent of popula-

tion density, but it has several drawbacks: it relies on data from

only a single nonrecombining locus; it fails to account for uncer-

tainty in the estimated TMRCA; and it assumes that a molecular

clock holds. Wilkins and Wakeley (2002) provide a coalescent-

based, method-of-moments approach applicable to sequence data,

which uses only average pairwise sequence distances among

samples.

More recently, efforts have been made to derive maximum-

likelihood estimators of dispersal parameters in CIBD models

(Rousset and Leblois 2007; Meligkotsidou and Fearnhead 2007).

Maximum-likelihood estimators have the advantage of making

full use of the data but the potential disadvantage of being difficult

to implement. Significant computational challenges exist to im-

plementing likelihood-based methods in population genetics. As a

result these methods rely on computational approximations, such

as importance sampling (IS), to estimate likelihoods (Stephens

and Donnelly 2000).

Here, we propose a novel IS method for maximum-likelihood

estimation of dispersal. The proposed method differs from exist-

ing likelihood methods in focusing on the geographic distribution

of low-frequency alleles only. By restricting the analysis to low-

frequency alleles, the computational problem of estimating the

likelihood is more tractable than for the full data. The computa-

tional gains arise because we need to consider only the ancestry

of the carriers of the low-frequency allele, rather than the an-

cestry of the whole sample. Further, the geographic distribution

of low-frequency alleles contains most of the information about

recent dispersal. Low-frequency alleles are typically descendants

of recent mutations and are geographically clustered in the ge-

ographic area where the mutation occurred initially. For a given

allele frequency, the tightness of this spatial clustering indicates

the levels of dispersal. From a coalescent perspective, copies of a

low-frequency allele have recent pairwise coalescent times, and

previous studies show that restricted dispersal has a large effect

on the distribution of recent pairwise coalescent times (Wilkins

2004; Fearnhead 2007). In addition, by focusing on low-frequency

alleles, our method only requires that a population be at demo-

graphic equilibrium since the low-frequency alleles in question

have arisen. This timescale is much shorter than the time to coa-

lescence of the whole sample (Wiuf 2000; Slatkin 2003).

Our method estimates the likelihood of ρσ2
x and ρσ2

y for each

locus separately and then combines information from independent

loci. It can be applied to datasets with large numbers of indepen-

dent loci such as single nucleotide polymorphism (SNP) datasets.

The likelihood framework provides approximate confidence in-

tervals and allows a likelihood-ratio test for equal dispersal in

both directions.

Methods
MODEL

We begin by considering a population genetic sample of L in-

dependent biallelic loci from a diploid population of size N that

is distributed over a finite area of size A with constant density

ρ = N/A. Let n = (n1, . . . , nL ) be the number of chromosomes

sampled at each of the L loci and let j = ( j1, . . . , jL ) be the counts

of the derived allele at each of the L loci. Let Xl be a 2 × jl ma-

trix containing elements Xldk that represent the dth-dimensional

geographical coordinate of the kth copy of the derived allele at

locus l, and let X = (X1, . . . , XL ). Further, we assume that all

copies of the derived allele are descendant from a single, unique

mutation event (i.e., all copies of the mutation are identical-by-

descent). Although we focus on biallelic loci in our presentation,

our method is also to applicable multiallelic loci (e.g., loci that

fit an infinite-alleles model of mutation), as long as each allele

considered is at low frequency and identical-by-descent.

For alleles that are identical-by-descent, the history of the

ancestral lineages of the allele can be summarized by a single

intraallelic genealogy for each locus that can be decomposed into

two portions. First, we specify a set of times describing events

on the genealogy with time measured in units of N generations

from the present day. Let Tl = (Tl1, . . . , Tl jl ) be a vector of times

such that T l1 is the time at which the first copy of the derived

allele arose at locus l and let Tli for i ≥ 2 be the time points in the

past at which the number of ancestral lineages in the intraallelic

genealogy decreased from i to i − 1 as one looks backwards in
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time. Let T = (T1, . . . , TL ). The second portion of the genealogy

is the tree topology describing the lineages involved in each of

the jl − 1 coalescent events on the intraallelic genealogy. Let

G = (G1, . . . , GL ) be the graphs describing the tree topology of

the intraallelic genealogy at each of the L loci.

To model dispersal, we consider a model with independent

dispersal along two perpendicular, geographic axes. We consider

the per-generation dispersal distribution along each axis to have

a mean of 0 with a variance of σ2
1 along one axis and a variance

of σ2
2 along the other. We assume the higher moments of the dis-

tribution are well behaved such that after some small duration of

time s (measured in units of N generations) the location of a lin-

eage starting at (x, y) is well approximated by a two-dimensional

normal distribution with mean (x, y) and a variance–covariance

matrix [[s Nσ2
1, 0], [0, s Nσ2

2]]. The precise time-point at which

the approximation becomes valid depends on the timescale of co-

alescent events in the intraallelic genealogy. In the extreme case,

where the allele frequency is so rare that intraallelic coalescent

events occur nearly instantaneously, our assumption implies the

dispersal distribution must be exactly normal. By assuming that

the geographic location of a lineage will be a two-dimensional

normal distribution, we are implicitly assuming that the positions

of each lineage are following a Brownian motion and that bound-

ary effects are negligible. The lack of boundary effects may be

reasonable for low-frequency alleles found centrally within large

habitats, because such alleles will likely not have dispersed widely

enough to have encountered the boundaries of the habitat.

To denote the unobserved geographic position of each of

the single mutation events that gave rise to the first copy of each

derived allele, let Zl = (Zl0, Zl1) be the coordinates of the location

at which the mutation event occurred for locus l and let Z =
(Z1, . . . , ZL ). Due to the constant density of the population, the

location at which a mutation occurs is equally likely across the

whole habitat, so that the marginal distribution P(Zl = z) equals
1
A for all z in the habitat.

Furthermore, we make the approximation that the intraal-

lelic genealogy is independent of the geographical configuration

of the lineages. This approximation is also used by Neigel et al.

(1991) and Meligkotsidou and Fearnhead (2007) and implicitly

assumes weak population density regulation. For our purposes,

we note that, even in density-regulated populations, the approxi-

mation may be more accurate for low-frequency alleles. In pan-

mictic populations, the number of copies of a low-frequency allele

evolves approximately as a linear birth–death process (Slatkin and

Rannala 1997), so that each copy of the allele leaves an indepen-

dent number of descendant copies in the next generation. The

extension that we assume here is that because copies of the low-

frequency allele reproduce independently of each other, they will

also reproduce independently of each other’s geographic config-

uration. Given this approximation, the distribution of topologies

and coalescent times for the intraallelic genealogy are described

by the birth–death results obtained by Slatkin and Rannala (1997)

for randomly mating populations. Specifically, the probability of

the vector Tl can be found by considering Tl as jl ordered samples

from the density h(t), where

h(t) = 2nl

(2 + tnl )2
. (1)

This distribution arises from the equations in Slatkin and Rannala

(1997) by setting f = nl
N and measuring time in units of N gener-

ations (see supporting information for more detail). The density

implies that:

P(Tl = {t1, . . . , t jl }) = jl !
jl∏

i=1

2nl

(2 + tli nl )2
(2)

for all possible values {t1, . . . , t ji }. For the topologies Gl, Slatkin

and Rannala’s results provide the following simple distribution

that reflects equiprobability of all labeled tree topologies:

P(Gl = g) = 1∏ ji
i=3

( ji
2

) (3)

for all possible g. To refer to the model, we use the acronym BBM,

as our model is a type of branching Brownian motion.

LIKELIHOOD-BASED INFERENCE

For performing inference on the model described above, we focus

on X, the geographic locations of derived alleles for a set of loci.

We are interested in inference on σ2
1 and σ2

2 although we can

only infer the value of these parameters jointly with ρ; thus the

identifiable parameters of the model are ρσ2
1 and ρσ2

2. We chose

to assume that the area A was known, and so we instead are only

interested in inference on Nσ2
1 and Nσ2

2, knowing that we can

convert them to ρσ2
1 and ρσ2

2 using the known value of A. We

define θ = (Nσ2
1, Nσ2

2) and use θ to refer to these parameters

succinctly. We are also interested in the special case in which

Nσ2
1 = Nσ2

2. In this case, there is only one identifiable parameter

of the model, which we denote as Nσ2 or in some cases θ∗ to be

more compact. Finally, there are the unobserved quantities that

are crucial components of the probability model. To summarize

these “missing data” at each locus we let Ml = (Tl, Gl, Zl).

Using the notation Pθ(·) for the probability of an event given

θ, the likelihood can then be written as

Pθ(X) =
L∏

l=0

Pθ(Xl )

=
L∏

l=0

∫
Pθ(Xl | Ml )Pθ(Ml ) dMl .

(4)

The integration over Ml is intractable analytically for realistic

sample sizes because the space of Ml is the set of all possible
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topologies, all possible vectors of intraallelic coalescent times,

and all possible geographic origins of the derived allele for locus l.

To approximate the integral over Ml, we use a set of ap-

proximation techniques. We use a straightforward Monte Carlo

approach to integrate over Tl, an IS approach to integrate over Gl,

and an approximate analytical integration for Zl. The details of

each approach are described in supporting information.

From the perspective of how well the whole approximation

algorithm performs, the critical part of the algorithm is the IS over

Gl. Here, we propose an IS distribution, P∗(Gl ) that proceeds by

randomly constructing a tree sequentially backwards in time such

that topologies that join geographically proximal lineages are fa-

vored. Our distribution P∗(Gl ) takes two parameters, θ0 and H.

The parameter θ0 defines a “driving value” of θ, such that the IS

distribution will perform best when θ has a value close to θ0. In

practice, we use a single set of m simulated values from P∗(Gl )

to evaluate the approximation to equation Pθ(X) across a range of

values of θ. This allows for significant computational speed-ups

because we only need to simulate from P∗(Gl ) once to calculate a

series of points on the likelihood surface around θ0. The parameter

H defines the extent to which geographical proximity influences

the sampled topologies. H can be thought of as a “heat” param-

eter in that as its value increases, the entropy of the importance

sampling distribution increases. More specifically, a value of H =
1 favors topologies in a close proportion to the contribution the

topology will make to the calculation of Pθ(Xl | Gl = gi ) whereas

larger values sample topologies more uniformly. The use of H is

designed so that as H approaches ∞, the importance sampler

P∗(Gl ) will converge on the straightforward Monte Carlo sam-

pler P(Gl). The roles of the H and θ0 parameters are described in

more detail in the supporting information.

Finally, using the approximations to the likelihood, we em-

ploy standard optimization routines from the GNU scientific li-

brary to maximize the likelihood with respect to θ. We denote

the maximum-likelihood estimate (MLE) of θ as θ̂ = (N̂σ2
1,

̂Nσ2
2)

and the associated likelihood as L (̂θ). We also maximize the like-

lihood for the constrained model in which dispersal is isotropic

so that σ2
1 = σ2

2. The MLE for the constrained case is denoted as

θ̂∗ = N̂σ2 with likelihood L(θ̂∗). Given L(θ̂) and L(θ̂∗), we can

compute the likelihood-ratio test statistic λ for the null hypothesis

that σ2
1 = σ2

2 as λ = L(θ̂∗)/L (̂θ).

PERFORMANCE EVALUATION

To formally evaluate the performance of the likelihood-based

inference, we take a two-part approach. In both cases, we

focus mainly on characterizing the sampling distributions of

N̂σ2
1, N̂σ2

2, N̂σ2, and λ because it is the sampling behavior of

these statistics that is most relevant to biological applications.

First, we evaluate the performance of our estimation method

on data simulated under the same BBM model that is used to define

the likelihood function. This step allows us to assess the perfor-

mance of the algorithm for numerically approximating the likeli-

hood function and producing estimates of θ. Given that the model

underlying the likelihood approach is identical to the model sim-

ulating the data, we expect that if the algorithm is performing

well, we will have a well behaved sampling distribution for the

statistics of interest, N̂σ2
1, N̂σ2

2, N̂σ2, and λ.

The second step is to evaluate how the method performs on

data from forward simulations from a model of individuals dis-

tributed on a lattice. The performance of the method on these

simulations will be a result of how well the numerical approxima-

tion to the likelihood function performs as well as how accurately

the BBM model that the likelihood function is based on summa-

rizes the behavior of the lattice-based model.

For the performance evaluations, we fix the value of H to

2, unless stated otherwise. We also fix the value of θ0 to twice

the value of θ used to simulate data, unless stated otherwise. In

practice, both the appropriate values of H and θ0 will depend on

the dataset in question (see Discussion).

Simulation of the BBM model
To simulate data under this model, we first fix the number of loci

L, the sample sizes per locus n, and the number of derived alleles

observed per locus j. We then perform the following steps for

each locus l:

1. Draw a topology from the distribution defined by P(Gl)

(eq. 3).

2. Draw a vector of times from the distribution defined by

P(Tl) (eq. 2). See the “Monte Carlo integration over Tl”

section of the supporting information for more detail on

how to simulate from P(Tl).

3. Assuming the mutation occurs at a geographic location (0,

0), simulate two independent Brownian motions along the

intraallelic genealogy defined by Gl and Tl. The resulting

set of geographic locations for the lineages at the present

day is stored as a simulated value of Xl.

Simulation of alleles in a finite lattice model
To test our method using an alternative model of dispersal in a

continuously distributed population, we simulated from a lattice

model in which one individual is at each point in a large lattice.

Although this model is still highly idealized, it includes density

regulation of the individuals, yet it is simple enough that we could

generate sufficient sample data with which to test our method. An

alternative approach for simulating from a model with density reg-

ulation is the coalsecent-based algorithm of Wilkins and Wakeley

(Wilkins and Wakeley 2002; Wilkins 2004).

We assumed a square lattice of (2l + 1) × (2l + 1) diploid

individuals (where l is an arbitrary nonnegative integer), and that

each generation consisted of two steps, dispersal of an infinitely
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large migrant pool followed by a random sampling of alleles

from that migrant pool at each lattice point. In each replicate, the

population was initially fixed for allele a. Then, at t = 0, one

of the copies of a in the individual at the center of the lattice

mutated to A to create a heterozygote. Then, each copy of A

contributed to the migrant pool at the lattice point dx and dy

steps away in proportion to a discretized and truncated bivariate

normal distribution with mean (0, 0), variances σ2
x and σ2

y , and

0 covariance. We truncated the dispersal distribution for dx and

dy larger than 3σx and 3σy to speed the computations. We also

simulated dispersal according to a modified double-exponential

distribution that has been motivated by seed dispersal data (Clark

1998): k(d) ∝ e−| d
α
|c where d =

√
d2

x + d2
y , α is a scale parameter,

and c is a shape parameter. For values of c < 1, the tails of this

distribution are not exponentially bounded (i.e., the distribution

is “fat-tailed”). For these simulations, we truncate the dispersal

distribution for x and y larger than 10σx and 10σy .

The frequency of A at location (x, y), px,y, is the sum of the

contributions to the migrant pool at that location from all extant

copies of A. To create the next generation of adults, we assumed

individuals are composed of two alleles independently sampled

with the frequency of A allele being px,y.

Each replicate continued until A was either lost or fixed. For

each set of replicates, we specified a target number of copies, j.

Whenever the number of copies of A was exactly j, the locations

of those j copies were recorded. At the end of each replicate in

which j copies were found at least once, one of the sets of locations

was chosen randomly to be the result for that replicate. Replicates

were continued until L replicates were obtained in which j copies

of A were found at least once. Then, the results for that set of

replicates were formatted for analysis by our IS program.

Evaluating a single run of the algorithm
A general property of IS algorithms is that their performance

can be evaluated by inspecting the distribution of IS weights

(Liu 2002). In particular, the variance of the IS weights is useful

because in pathological cases, the weights will vary wildly so

that the final approximation will be determined by a few large

IS weights. A useful summary statistic based on the variance of

the importance sample weights is the effective sample size (ESS).

Letting g = (g1, . . . , gm), the ESS can be defined as

ESS = m

1 + VarP∗(Gl )(w(g))

where w(·) is defined in the supporting information. The ESS

statistic can be interpreted as the effective number of independent

samples from the target distribution Pθ(Xl | Gl )P(Gl ).

EXAMPLE APPLICATION TO ARABIDOPSIS THALIANA

To provide an example application of the method, we ana-

lyzed a dataset representing genetic variation from populations of

A. thaliana. We use a subset of the data presented in Nordborg et al.

(2005). Of the 96 accessions presented by Nordborg et al. (2005),

we focus on a subset of 49 accessions from Europe (Fig. S2).

The 49 accessions were chosen by first taking the subset of 76

accessions in Europe and then excluding accessions at random

that represented multiple samples from a single geographic lo-

cale. As a result, the set of 49 accessions represent 49 unique

geographic locations across Europe. This last fact is important for

application of our method because of the assumption in our model

that individuals are sampled randomly from across the habitat and

obtaining multiple individuals from the same location is unlikely

under random spatial sampling.

We next filter the sequence data to obtain sites that are bial-

lelic. We assume minor alleles are derived and limit ourselves to

a fixed low-frequency range [i.e., each has six copies of the minor

allele segregating (which corresponds to an allele frequency of

6/(2 · 49) ≈ 6%]. The geographic locations of the low-frequency

allele at each locus are used to define X. Here, we present the

results for a simple dataset of eight loci from chromosome 3,

chosen to be well spaced along the chromosome.

Results
PERFORMANCE OF IMPORTANCE SAMPLING

APPROXIMATION

Across a range of exploratory trial values, we found the IS al-

gorithm decreases the Monte Carlo variance relative to using

a straightforward Monte Carlo approach. In most cases, the IS

algorithm outperforms the Monte Carlo sampler by providing es-

timates of the likelihood surface that are accurate and suffer from

little Monte Carlo sampling error (Fig. 1); however in some rare

cases the IS algorithm produces a likelihood surface that is a clear

outlier from the majority of other IS replicates. Typically, these

aberrant replicates are recognizable by having low values for the

ESS statistic and/or IS weights with means that are not approx-

imately 1. These rare replicates likely reflect cases in which the

importance sampler samples a rare topology with a very large

IS weight and so the resulting approximation to the likelihood

is dominated by a single replicate. In most cases, increasing the

value of H was found to decrease the occurrence of these aberrant

runs, although the reduction comes at the cost of increased Monte

Carlo variance among the remaining replicates.

Performance on data from the birth-process model
To assess the performance of the IS-based likelihood method, we

simulated data under the BBM model that underlies the method.

Rather than examining the likelihood surface itself, we focus on

the properties of the estimators that would be used in an applica-

tion to data. In particular, we are interested in the performance of

the point-estimates N̂σ2
1, N̂σ2

2, N̂σ2, their associated confidence
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Figure 1. Example of the performance of the importance sampling algorithm relative to the straightforward Monte Carlo sampler. The

left panel shows 10 replicate estimates of the θ∗ likelihood surface using 1000 iterations of the importance sampling algorithm. The central

panel shows 10 replicate estimates using 3000 iterations of the random sampling algorithm. The right panel shows a close approximation

to the true likelihood surface (obtained by 10 million replicates of the Monte Carlo sampler). The test case is a simulated sample from one

locus with 12 minor alleles observed and with θ = (104, 104). For the importance sampling algorithm, H = 1 and θ0 = (2 × 104, 2 × 104).

intervals, and the likelihood-ratio test based on λ. As mentioned

above, this step allows us to investigate whether there are any

obvious deficiencies in the IS algorithm and to gain insight on the

performance of likelihood-based inference for this problem.

We found the sampling variance of the point estimates

N̂σ2
1, N̂σ2

2, and N̂σ2, decreases as either the number of low-

frequency alleles observed per locus, j, or the total number of

loci, L, increases (Fig. 2). For smaller sample sizes the sampling

distributions are skewed toward higher values.

Despite the positive skew in the sampling distribution, the

estimators appear to be unbiased. The mean of the estimators is

consistently close to the true values used in the simulation, even

for values of L and j that represent small sample sizes ( j = 3,

L = 3). The lack of bias is especially remarkable given the driv-

ing value of θ0 was set to twice the true value of θ used in the

simulation. Because Nσ2
1, Nσ2

2, and Nσ2 are scale parameters,

proportionally similar results are found when simulations are per-

formed with different values of Nσ2
1, Nσ2

2, and Nσ2 (e.g., the co-

efficients of variation for each estimator are constant, results not

shown).

The sampling distribution of N̂σ2 has a lower sampling vari-

ance than that of either N̂σ2
1 or N̂σ2

2, particularly for small sample

sizes (Fig. 2 vs. Fig. S3). This result is not unexpected because

for N̂σ2 the geographic positions of alleles in both dimensions

are informative, whereas for N̂σ2
1 and N̂σ2

2, only the positions of

the alleles in a single dimension are informative.

Point estimates of the coverage probabilities for the 2 log-

likelihood confidence intervals for Nσ2
1 and Nσ2

2 suggest the con-

fidence intervals are slightly too narrow (e.g., Table 1). Across

the conditions we investigated, the average coverage probability

is 93.5% for both Nσ2
1 and Nσ2

2. No clear patterns with regard to

how the coverage probability changes with the number of loci or

number of copies of the low-frequency allele were observed, al-

though asymptotic likelihood theory suggests the coverage prob-

ability will approach 95% as the number of loci increases.

The coverage probabilities for Nσ2 likewise show no clear

relationship to L or the number of copies of the low-frequency

allele observed at each locus; however one clear difference is that

the confidence intervals are closer to the expected value of 95%

(Table 2). The average coverage probability across the conditions

we investigated was 95.2%. When we assess the performance of

the likelihood ratio test, we find it is well-behaved in the sense

that the false positive rate is generally close to 0.05, as intended

(Table 3, average P-value is 0.0547 across conditions). The power

of the likelihood-ratio test depends on log(σ2
1/σ2

2) and increases

with j (Fig. 3).

These results show how when we simulate data from the same

model underlying our method (the BBM model), we observe rea-

sonable performance. The MLEs have low bias, confidence inter-

vals show approximately the correct coverage, and a likelihood-

ratio test that is well calibrated with respect to nominal P-values.

These results indicate that the IS algorithm for computing the like-

lihood and subsequent methods for maximizing the likelihood are

performing well. However, the BBM model is an approximation

to the dynamics of a low-frequency allele that ignores population

density regulation. To get a sense of how the method will per-

form on a model with density regulation, we turn to lattice-based

simulations.

Performance on data from the lattice-based model
To assess performance of the method on lattice-based simula-

tions, we again focus on the performance of the point estimates

EVOLUTION NOVEMBER 2009 2 9 1 9



J. NOVEMBRE AND M. SLATKIN

Figure 2. Box plot summaries of the sampling distribution of

N̂σ2. Summaries are plotted across a range for the number of

loci and the number of copies of the minor allele observed, and

the true value of Nσ2 is indicated by a horizontal dashed line in

each panel. (A) Brownian birth process results: Each summary is

based on the results of applying the importance sampling algo-

rithm with M = 2000, θ0 = (200, 200) and H = 2–500 datasets ob-

tained by independent simulations from the birth process model

with θ = (100, 100). (B) Lattice-model results: Each summary is

based on the results of applying the importance sampling algo-

rithm with M = 20, 000, θ0 = (102 × 104, 102 × 104) and H = 2–500

datasets obtained by independent simulations from a 101 × 101

lattice with σ1 = σ2 = 5, such that θ = (51 × 104, 51 × 104).

N̂σ2
1, N̂σ2

2, and N̂σ2, their associated confidence intervals, and the

likelihood-ratio test based on λ.

As with data from the BBM model, the sampling variance

of the point estimates N̂σ2
1, N̂σ2

2, and N̂σ2 decreases as either the

number of loci or the number of low frequency alleles observed

per locus increases. When the number of low-frequency alleles

is low, we again see a skew toward high values. One important

distinction is that for the lattice simulations, we generally observe

a modest bias. For example, when we simulate alleles arising

on a 101 × 101 lattice with σ2
1 = σ2

2 = 25, we find that the es-

timated values of N̂σ2
1, N̂σ2

2, and N̂σ2 are each biased upwards

(Fig. 2, Fig. S3). The bias decreases as the number of copies of the

low-frequency allele ( j) increases, but it appears to be unaffected

by the number of loci (L). One consequence of this bias is that the

coverage probabilities of the 95% confidence intervals are poorly

behaved—for our simulations, often the lower confidence inter-

val is above the true value of the parameter, resulting in very low

Table 1. Point estimates for the coverage probabilities of the 2

log-likelihood confidence intervals for Nσ2
1 .

No. of copies of allele
Simulation model L

3 6 9 12 15

Brownian birth 5 0.920 0.944 0.948 0.942 0.942
process 10 0.938 0.946 0.924 0.928 0.934

15 0.934 0.926 0.938 0.942 0.940
20 0.932 0.932 0.916 0.930 0.930

Lattice model 5 0.800 0.836 0.876 0.888 0.924
10 0.510 0.646 0.756 0.806 0.852
15 0.356 0.524 0.658 0.732 0.802
20 0.218 0.460 0.560 0.664 0.756

coverage of the true value (Tables 1 and 2). Coverage increases as

j increases, but as L increases the coverage becomes worse. Pre-

sumably as L increases one is getting tighter confidence intervals

around a central value that is biased, resulting in poorer coverage;

whereas when j increases the bias is reduced, hence increasing

the coverage probabilities.

To further investigate bias, we conducted experiments to see

how habitat size might affect the estimates. Because the BBM

does not allow for edge effects, one might expect that as dispersal

increases substantially relative to the scale of the habitat, the

method might be biased toward underestimating the levels of

dispersal. The downward bias would arise because the limited

habitat size forces alleles to be more geographically clustered

than they would be in an infinite habitat, and the method confuses

this excess clustering for a signature of low levels of dispersal.

Our simulations confirm this behavior (Fig. 4A). In contrast, when

habitat sizes are large relative to the scale of dispersal, we find the

estimates are directly proportional to the true underlying values

(with a modest bias upwards, Fig. 4B).

We considered whether the driving value θ0 could play a

role in the upward bias. In nearly all the previous lattice model

Table 2. Point estimates for the coverage probabilities of the 2

log-likelihood confidence intervals for Nσ2.

No. of copies of allele
Simulation model L

3 6 9 12 15

Brownian birth 5 0.962 0.954 0.962 0.950 0.938
process 10 0.970 0.976 0.960 0.938 0.954

15 0.956 0.962 0.958 0.962 0.954
20 0.958 0.952 0.942 0.938 0.914

Lattice model 5 0.766 0.804 0.864 0.856 0.910
10 0.432 0.530 0.680 0.706 0.778
15 0.232 0.370 0.492 0.576 0.698
20 0.142 0.272 0.424 0.518 0.634
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Figure 3. Power of the asymptotic likelihood-ratio test to detect

departures from the null hypothesis that σ2
1 = σ2

2 . The results are

based on inference performed on simulated data from the Brown-

ian birth process model where Nσ2
1 was fixed at 100 and Nσ2

2 was

varied across the values 10, 50, 75, 100, 125, 200, 1000. All simula-

tions were fixed at L = 20. Power is estimated from 500 replicate

simulations. Similar power curves are found for the lattice model

simulations (Fig. S4).

simulations the driving value was arbitrarily chosen to be twice

the value of θ = (Nσ2
1, Nσ2

2) used to simulate the data (as we did

in our simulated data from the BBM model). To assess whether

the method is sensitive to this driving value and might bias θ̂

toward θ0, we studied how the distribution of N̂σ2 changes as a

function of θ0 (Fig. S5). The results show that unless θ0 is much

less than θ (i.e., log10(θ0/θ) < −1) the results are unaffected by

the choice of θ0. Importantly, even when θ0 = θ (and recalling

the ideal choice of θ0 is θ), we find an upward bias. Combined

with the observation that the inference for the BBM model was

not biased, this suggests the bias is not a result of properties of

the IS approximation for calculating the likelihood.

We next investigated the performance of the likelihood-ratio

test on the lattice model data (Table 3 and Fig. S4). We find no

clear patterns in how the false positive rate depends on L and j

but that overall the false-positive rates are close to the nominal P-

value of 0.05 (the average false positive rate across our simulations

conditions was 0.044). As in the simulations of the BBM model,

the power of the method is proportional to log( σ2
1

σ2
2
) and the power

increases with j.

We also considered how the method performs for data gen-

erated from an alternative dispersal distribution, with more or

less kurtosis than the discretized normal distribution. We used the

modified double-exponential distribution, in which the parame-

ter c determines the kurtosis of the distribution. For reference, a

normal distribution has a kurtosis value of 3; more fat-tailed (lep-

tokurtic) distributions have higher values; and more narrow-tailed

(playtkurtic) distributions have lower values. Our results show that

as kurtosis increases, the estimates N̂σ2 decrease, maintaining an

upward bias, until the distribution becomes very leptokurtic (c <

Figure 4. Lattice model results: Effect of habitat size on bias.

Each panel shows the distribution of MLEs as a function of Nσ2.

(A) Lattice of size 101 × 101. Hundred replicates per value of Nσ2.

(B) Lattice of size 401 × 401. Twenty-five replicates per value of

Nσ2. All simulations had L = 10, j = 9.

0.75, kurtosis > 12), at which point the estimates have a down-

ward bias (Fig. 5).

Finally, we note that for the lattice model one can convert

estimates of Nσ2 to estimates of the “neighborhood size,” 4ρπσ2

Table 3. Point estimates for the false positive rate of the asymp-

totic likelihood-ratio test that σ2
1=σ2

2 .

No. of copies of allele
Simulation model L

3 6 9 12 15

Brownian birth 5 0.044 0.054 0.062 0.042 0.056
process 10 0.068 0.070 0.060 0.052 0.050

15 0.072 0.054 0.044 0.060 0.054
20 0.060 0.046 0.058 0.048 0.040

Lattice model 5 0.054 0.054 0.056 0.052 0.028
10 0.058 0.054 0.018 0.036 0.028
15 0.072 0.046 0.040 0.048 0.038
20 0.071 0.070 0.038 0.056 0.046
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Figure 5. Lattice model results: Effect of kurtosis on bias. The

distribution of MLEs is plotted as a function of the kurtosis ob-

served in the modified double-exponential dispersal distribution

described in the text. Simulations used c = (0.5, 0.75, 1, 1.5, 2, 4)

to produce the six different levels of kurtosis, and in each case α

was chosen to result in a constant standard deviation of 5. Kurtosis

was calculated based on the distribution produced after discretiza-

tion and truncation (see main text). The lattice size was 101 × 101

so that the true underlying value of Nσ2 = 51 × 104. Twenty-five

replicates per value of c. All simulations had L = 10, j = 9.

(Wright 1943) by dividing N̂σ2 by the total area of the population

(A) and multiplying by 4π. For example, suppose we obtain the

estimate of 6 × 106 for Nσ2 on a 200 × 200 lattice. In this case,

the neighborhood size would be estimated as 1885 individuals.

Figure 6. The approximate log-likelihood curves for Nσ2 for each of the eight loci in the example dataset. The log-likelihood curves are

translated so that the maximum value across the range of 2.5 × 106 km2–2.5 × 107 km2 is positioned at 0 on the y-axis. In some cases,

the MLE lies outside of this range (e.g., Locus 147 and Locus 7014).

APPLICATION TO A. THALIANA

In the sample Arabidopsis dataset, the copies of the minor allele

are distributed across a spatial area of hundreds of kilometers

in each dimension (Fig. S6), although the exact extent varies

largely from locus to locus. Locus 147 and Locus 7014 have the

most compact distributions, whereas Locus 2123 has the most

widespread. The variability from locus to locus in the distribution

of the minor allele translates to high variability in the likelihood

surfaces for Nσ2 at each locus (Fig. 6). The curvature of each

individual likelihood surface and the variability of the likelihood

surface among loci make obvious that precise estimation of Nσ2 is

difficult using single loci. The joint likelihood curve (Fig. 7) has a

much more narrow confidence interval ([3.1 × 106, 11.27 × 106])

than any individual locus and an MLE of 5.9 × 106. Assuming

N = 50,000 the corresponding value of σ would be 10 km. The

likelihood surface for Nσ2
1 and Nσ2

2 (Fig. 8) shows the MLE

is close to the line defined by σ2
1 = σ2

2 and in turn there is no

significant support to reject the null hypothesis that σ2
1 = σ2

2.

Discussion
The IS approach taken here works well for approximating the

likelihood of Nσ2
1, Nσ2

2, and Nσ2 in the BBM model. Estimates

of each parameter are unbiased, confidence intervals for each pa-

rameter have roughly the correct coverage probabilities, and the

likelihood-ratio test of σ2
1 = σ2

2 has the expected false positive rate.

These patterns are true even for small datasets, which is partic-

ularly noteworthy because the statistical properties of likelihood
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Figure 7. The joint likelihood curve across all loci for Nσ2. The

horizontal line intersects the curve at the curve’s maximum value

and the two vertical lines demarcate the 2 log-likelihood support/

confidence interval.

estimators are assured only as sample sizes become large. In ad-

dition, these patterns were observed across a large number of

simulated datasets that were analyzed in a batch without any spe-

cial adjustments to parameters that govern the implementation of

the method (H, θ0, and M). In addition, the computations proceed

quickly (for a single locus with nine copies of the low-frequency

allele, 20,000 iterations of the IS algorithm complete in a few

seconds on a 3 GHz processor with 16GB RAM). The favor-

able performance of the inference method under these settings is

evidence that the technical challenges of approximating the like-

lihood function of the BBM and finding its maxima are overcome

by the IS algorithm used here.

Despite the robust performance of the IS algorithm observed

in the BBM simulations, Monte Carlo techniques such as IS

should always be used with care. The appropriate settings for

H, θ0, and M will necessarily depend on the dataset in question.

Figure 8. The joint likelihood surface across all loci for Nσ2
1 and

Nσ2
2 .

Here, we found values of H = 2 work well and we found simi-

lar results for values of H = 2 − 10 (unpublished results, note:

values > 10 not tested). For θ0, we showed that the choice is

not crucial as long as its value is not drastically smaller than the

underlying θ for the dataset (Fig. S5). Because θ is not known

a priori a reasonable approach suggested by Figure S5 is to run

the algorithm iteratively using as θ0 the θ̂ value from the previous

run until the estimate θ̂ does not change. Finally, the larger the

value of M the better the approximation will be, and it is useful

to rerun the algorithm several times. The ESS statistic will indi-

cate whether the estimates are suffering from large Monte Carlo

sampling error if the value of M is too small.

To assess the effects of model misspecification, we also sim-

ulated data from a lattice model of dispersal. We found our method

still performs well, in that the estimated parameters are propor-

tional to their true values, especially for large habitat sizes where

boundary effects are minimized (Fig. 4). However, we do find a

general upward bias—inferred average dispersal distances tend

to be larger than the true values. Given the lack of bias for data

simulated under the BBM model, we conclude that the bias is due

to discrepancies between the dynamics in the lattice and BBM

models, and not to the IS algorithm itself. The bias appears to

be caused by the fact that low-frequency mutations are dispers-

ing slightly farther than expected given the branch lengths of the

intraalleleic genealogy. Or to restate the same conclusion, given

the geographic locations, the branch lengths of the intraallelic

genealogy tend to be somewhat shorter than expected under the

linear birth–death model.

The observation of upwardly biased estimates of dispersal

in a CIBD model is not unique to our study. Meligkotsidou and

Fearnhead (2007) observe a similar bias, and both our methods

use the same approximation; namely, the probability distribution

for events in the genealogical process occurs independently of the

locations of the sampled lineages. This approximation implicitly

ignores population density regulation, which is a key feature of

the lattice model. Coalescent-based models that explicitly include

population density regulation (Barton and Depaulis 2002; Wilkins

and Wakeley 2002; Wilkins 2004), are much more challenging

computationally, and further work is necessary before they can be

adapted for likelihood-based inference. A further consideration is

that, in practice, the extent of density regulation may vary across

species. For example, Meligkotsidou and Fearnhead (2007) found

the performance of their estimator improved in data derived from

populations that have been expanding, and we would expect a

similar pattern to hold for our estimator.

We also assessed the effects of habitat size and the kurtosis

of the dispersal distribution. If the habitat size is small relative

to Nσ2, dispersal parameters will be underestimated. This prob-

lem arises because of boundary effects, whereby alleles are being

constrained in how far they can disperse, an aspect that is not
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captured by our model. In practice, this suggests that loci with

low-frequency alleles that are found near the edges of a habitat

should be excluded from datasets prior to applying our approach,

or at least analyzed separately with the intention of quantifying

boundary effects. We also found that if the dispersal distribution

is strongly leptokurtic, dispersal parameters may be underesti-

mated. This perhaps occurs because the long-range migration

events that make a dispersal distribution fat-tailed are unlikely

to have been sampled in the time because a low-frequency allele

arose by mutation. As a result, low-frequency alleles are more

clumped than they would be if dispersal distances were normally

distributed. Although the inference algorithm could in principle be

based on a different dispersal distribution, that would increase the

computational cost because our approach exploits properties of

the normal distribution for the peeling algorithm (see supporting

information).

Given these considerations, we can tentatively conclude that

barring boundary effects and fat-tailed dispersal distributions, our

method will often overestimate the dispersal parameter, and thus it

provides an upper bound for the average dispersal distances. There

are many complicating factors that we have not addressed, in-

cluding misspecification of the derived allele, density-dependent

dispersal, directional bias in dispersal, and nonrandom spatial

sampling, that will affect the results from using our method, and

its true accuracy cannot be established without detailed modeling

of dispersal in a study species. Nevertheless, our method does

provide a computationally feasible approach for estimation based

on the dispersal of low frequency, relatively young mutations, and

those estimates are at least of the right order of magnitude for the

models of dispersal considered here.
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