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To perform likelihood-based inference for this problem we need to perform an integration over
missing data:

Pθ(Xl) =
∫ ∫ ∫

Pθ(Xl|Gl,Tl,Zl)P (Gl)P (Tl)P (Zl)dZldGldTl.

To integrate over Tl we use straightforward Monte Carlo sampling, i.e. for the ith Monte Carlo
replicate we sample the vector ti from the distribution P (Tl). To integrate over Gl we use im-
portance sampling, so that for the ith Monte Carlo replicate we sample gi from an importance
sampling distribution P ∗(Gl) and weight its contribution by w(gi). We describe both of these steps
in more detail below. The resulting approximation is:

Pθ(Xl) ≈
1
m

m∑
i=1

∫
Pθ(Xl|Gl = gi,Tl = ti,Zl = z)w(gi)P (Zl = z)dz (1)

where m is the number of Monte Carlo replicates.
Further simplification can be achieved by approximating the integration over z, so that the

above becomes:

Pθ(Xl) ≈
1
m

1
A

m∑
i=1

Pθ(Xl|Gl = gi,Tl = ti)w(gi) (2)

The following sections explain in more detail the steps involved in computing the approximation
to Pθ(Xl). First though we take a slight digression and review Felsenstein’s pruning algorithm for
computing Pθ(Xl|Gl = gi,Tl = ti,Zl = z) because its structure plays an important role in our
methods for integrating out Zl and Gl.

Felsenstein’s 1973 pruning algorithm

We first note that due to the Brownian motion assumptions regarding dispersal,
Pθ(Xl|Gl = gi,Tl = ti,Zl = z) is the product of independent multivariate normals, one for each
spatial dimension. The parameters of the multivariate normal can be seen to be functions of gi,
ti, and z. First, let µ(x) be a vector of length jl and with each element equal to x. Let Σ(g, t) be
a jl × jl matrix constructed so that the element at row r and column c contains the total branch
length of shared ancestry between the derived allele copies r and c. On the diagonals, the elements
should contain t1, the time since the mutation arose. Finally, letting fMV N (x, µ,B) represent the
probability density of a multivariate normal distribution with a vector of observations x, a mean
vector µ, and a variance-covariance matrix B, we have
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Pθ(Xl|Gl = gi,Tl = ti,Zl = z) =
2∏

d=1

P (Xld·|Nσ2
d, Gl = gi,Tl = tl, Zld = zd)

=
2∏

d=1

fMV N (Xld·, µ(zd), Nσ2
dΣ(g, t)).

Using the pruning algorithm of Felsenstein (1973) we can compute each multivariate normal as
the product of j independent univariate normal distributions, where j − 1 of the normal distribu-
tions correspond to computations on the interior nodes of the tree topology and the last normal
distribution is computed for the root of the tree.

The general procedure for the pruning algorithm for locus l would be:

1. For each node k and each dimension d, define x
(d)
k , S2

k , Lk, v′k.

2. For the nodes at the tips of the tree (i = 1 . . . jl), assign x
(d)
i = Xldi, S2

i = 0, Li = 1,v′i = vi

where vi is the length of the branch immediately ancestral to node i.

3. Consider the first pair of nodes (a, b) to join looking backward in time, and label the new
node they create as node c. Then set:

v′a = va + S2
a

v′b = vb + S2
b

Lc = fN (x(1)
a − x

(1)
b , 0, (v′a + v′b)Nσ2

1)fN (x(2)
a − x

(2)
b , 0, (v′a + v′b)Nσ2

2)LaLb

S2
c = 1/( 1

va
+ 1

vb
)

x
(d)
c = ( 1

v′a
x̄

(d)
a + 1

v′
b
x̄

(d)
b )/( 1

v′a
+ 1

v′
b
)

4. Repeat step 2 for the next pair to join, until the final node r remains. Then we have the final
calculation:

Pθ(Xl|Gl = gi,Tl = ti,Zl = z) = fN (x(1)
r , z1, v

′
r)fN (x(2)

r , z2, v
′
r)Lr.

Example using figure 1

As an example we consider the intra-allelic genealogy in Figure 1. Let t be the vector of event
times, g be the topology, and z the geographic position of the mutation event. To demonstrate the
pruning algorithm we focus on a single locus and single dimension, so we momentarily suppress the
d and l indices for clarity. For this tree we would have:

P (X·|Nσ2, G = g,T = t, Z = z) = fMV N ((x1, x2, x3, x4, x5), (z, z, z, z, z), Nσ2Σ(g, t))

where

Σ(g, t) =


t1 v7 + v9 v9 v9 v9

v7 + v9 t1 v9 v9 v9

v9 v9 t1 v8 + v9 v8 + v9

v9 v9 v8 + v9 t1 v6 + v8 + v9

v9 v9 v8 + v9 v6 + v8 + v9 t1

 .
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Figure 1: Example intra-allelic genealogy.

By using the pruning algorithm we arrive at a form that is the product of univariate normal
distributions:

P (X·|Nσ2, G = g,T = t, Z = z) =

fN (x5 − x4, 0, (v4 + v5)Nσ2)×
fN (x2 − x1, 0, (v1 + v2)Nσ2)×
fN (x̄6 − x3, 0, (v3 + v′6)Nσ2)×
fN (x̄7 − x̄8, 0, (v′7 + v′8)Nσ2)×
fN (x̄9, z, v′9Nσ2)

or equivalently:

P (X·|Nσ2, G = g,T = t, Z = z) =
L6 × L7×
L8 × L9×
fN (x̄9, z, v′9Nσ2)

Key features of the pruning algorithm

There are two key features of the algorithm that are useful to note. The first is that P (X·|Nσ2, G =
g,T = t, Z = z) is a product of terms that each represent a single node. The terms are not
independent, however their dependency structure is simple and is such that Lk only depends on
{Li, i ∈ Ck} where Ck is the set of descendant nodes of k.

The second important feature is that z only enters the equation during the final step as part of
the calculation of a single univariate normal distribution.
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Sampling intra-allelic coalescent times Tl

As part of the approximation to Pθ(Xl) we need the ability to simulate values from P (Tl). Sim-
ulation from P (Tl) is achieved by sorting a sample of jl values from the probability density h(t)
(Equation 1, main text). To simulate from h(t) we transform a uniform [0,1] random deviate u by
H−1(u), the inverse cumulative distribution function that corresponds to the density h(t):

H−1(u) =
2u

nl(1− u)
.

The observation that P (Tl) can be computed as an ordered sample from the probability density
h(t) is a result that arises naturally by considering the distributions P (Tl1) and P (Tl1, . . . , Tljl

|Tl1)
derived by Slatkin and Rannala (1997). To follow their notation we temporarily drop the subscript
l and let the value f be the fraction of all lineages sampled in the population. For neutral alleles
in constant-sized populations they derived the forms:

P (T1 = t1) =
2jf(ft1)j−1

(2 + ft1)j+1

and

Pr(T2 = t2, . . . , Tj = tj |T1 = t1) = (j − 1)!
j∏

i=2

2f(2 + ft1)
ft1(2 + fti)2

.

If we compute the joint distribution P (T1 = t1, T2 = t2, . . . , Tjl
= tjl

) we find after simplification
that:

P (T1 = t1, T2 = t2, . . . , Tjl
= tjl

) = j!
j∏

i=1

2f

(2 + fti)2

which immediately suggests the whole vector of times can be obtained by sorting j replicates from
the single density 2f

(2+ft)2
. The density h(t) (Equation 1, main text) is equivalent to 2f

(2+ft)2
, but

with the definition that f = n
N and with time scaled in units of N generations.

Sampling tree topologies using importance sampling

The importance sampling distribution P ∗(Gl) is motivated by considering the function Pθ(Xl|Gl =
gi,Tl = ti,Zl = z). As mentioned above, the peeling algorithm of Felsenstein (1973) defines how
to compute Pθ(Xl|Gl = gi,Tl = ti,Zl = z) as the product of independent univariate normal
distributions. From the pruning algorithm, we can see that any node k will contribute to the
probability of the data in proportion to Lk. This suggests an importance sampling algorithm that
samples the nodes of a topology in proportion to their contribution to the likelihood.

1. For the time-point tk, 2 ≤ k ≤ n, there are k(k − 1)/2 possible pairs of lineages that can
be joined. Each of these pairs defines a new node on the tree and let the set of all possible
new nodes be N . Using step 3 of the pruning algorithm with θ = θ0 calculate the value of
Li, i = 1 . . . k(k − 1)/2 for each node. Choose a node i to add to the tree with probability:

LH
i∑

a∈N LH
a

where H is a “heat” parameter that takes values greater than or equal to one, and hence
flattens the sampling distribution over potential nodes.
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2. Update the tree topology to reflect the chosen node c. This includes setting xc and S2
c

according to the equations in step 3 of the pruning algorithm above.

3. Define the weight factor for that node as:

wr,k =
2

k(k−1)

LH
c∑

a∈N LH
a

where c is the index of the chosen node.

4. Repeat step 1 for the next branch-point back in time, until a complete topology is constructed.

5. The resulting topology is gi which we store along with w(gi) =
∏n

k=2 wi,k.

The sampling algorithm is closely related to the importance sampling algorithm proposed by Slatkin
(2002) except that the present algorithm is designed for continuous characters that evolve according
to Brownian motions, rather than discrete state space characters evolving according to continuous-
time Markov chains. In addition, in Slatkin (2002) the equivalent of θ0 is fixed to be θ in order to
allow for a large cancellation and simplification of the Monte Carlo estimate of the probability of
the data. While the Slatkin (2002) approach leads to computationally efficient evaluation of the
likelihood at a single point, it has the drawback of requiring a new set of importance sampling
replicates for evaluating every point. The approach given here is more computationally expensive
for evaluating the probability of the data at a single point; however, once the first set of topologies
has been sampled, the algorithm allows for very efficient calculation of the probability of the data
in the region around θ0. One final difference is that the algorithm presented here includes a heat
parameter H that can be used to flatten the importance sampling distribution.

Approximate analytical integration of Zl

The goal of this step is to compute Pθ(Xl|Gl = gi,Tl = ti) by quickly performing the integral on
the right-side here:

Pθ(Xl|Gl = gi,Tl = ti) =
∫

Pθ(Xl|Gl = gi,Tl = ti,Zl = z)P (Zl = z)dz.

As noted above, the calculation of Pθ(X|Gl = gi,Tl = ti,Zl = z) involves z only through the
product of two univariate normals,

∏2
d=1 fN (x̄(d)

r , zd, v
′
rNσ2

d) where r is the index of the node rep-
resenting the MRCA of the intra-allelic genealogy and x̄

(d)
r and v′r are quantities that arise from

performing the initial steps of the pruning algorithm. In addition we recall that P (Zl = z) = 1
A .

As a result, our main challenge is to compute the right-hand side:

Pθ(Xl|Gl = gi,Tl = ti) =
K

A

∫ 2∏
d=1

fN (x̄dr, zd, v
′
rNσ2

d)dz

where K is a constant with respect to the integration representing the j − 1 Li terms that arise in
the calculation of Pθ(X|Gl = gi,Tl = ti,Zl = zd).

Because there is no analytical solution to this integral for arbitrary habitat shapes, we make
the following approximation. We assume that if the habitat is sufficiently large relative to x̄dr

and v′rNσ2
d then the integration will evaluate to approximately one and thus we can make the

approximation:
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Pθ(Xl|Gl = gi,Tl = ti) ≈ K

A

≈ 1
A

jl−1∏
k=1

Lk

Using this approach we are in effect only considering independent contrasts between the positions
of lineages in the genealogy. In turn, the approach is related to the restricted maximum likelihood
approach taken in Felsenstein (1981). In cases where the assumption regarding a relatively large
habitat size is violated, the approximate likelihood surface will be flatter than the true likelihood
surface. Thus, violations of the assumption should lead to overly broad confidence intervals and
conservative inferences.

Before continuing we note one property of our approximation to Pθ(Xl|Gl = gi,Tl = ti). By
collecting the terms in the univariate normal distributions that comprise the Lk terms, we have:

Pθ(Xl|Gl = gi,Tl = ti) ≈
1
A

2∏
d=1

(2πNσ2
d)

−(jl−1)/2D
−1/2
i exp{−SSi/(2Nσ2

d)}

where SSi is a “sum of squares” term that is based on Xl, gi, and ti. Di is a normalization term
based on gi and ti. An attractive feature here is that the terms in the above equation that depend
on gi and ti are independent of θ. This suggests that we only need to store SSi and Di for each gi

and ti sampled to calculate Pθ(Xl|Gl = gi,Tl = ti) for any value of θ.

Pulling it all together to approximate Pθ(Xl)

The complete algorithm then proceeds as following:

1. Take as user input the value of θ0 and H for the importance sampler P ∗(G).

2. For i = 1, . . . ,m

(a) Sample ti from P (T) using the algorithm described above.

(b) Sample gi from P ∗(G) using the algorithm described above.

(c) Calculate SSi, Di, w(gi) and store the values.

3. For any desired θ compute Pθ(Xl) as:

Pθ(Xl) ≈
1
m

m∑
i=1

w(gi)
A

[
2∏

d=1

(2πNσ2
d)

−(jl−1)/2D
−1/2
i exp{−SSi/(2Nσ2

d)}
]

.

In practice, we drop the 1
A term because it only scales Pθ(Xl) and by dropping it we no longer have

to specify A.

Obtaining the maximum likelihood estimate and confidence intervals for θ.

Using the method described above to approximate Pθ(Xl) we obtain the MLE by using numerical
optimization routines provided by the GNU Scientific Library. The steps are as follows:
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1. We first begin with the constraint that Nσ2
1 = Nσ2

2 = Nσ2, and we let θ∗ = (Nσ2, Nσ2). In
this case, Pθ∗(Xl) is a one-dimensional function of Nσ2 and we use the Brent minimization
algorithm to find the value Nσ2 that maximizes Pθ∗(Xl). Let the maximum value of Pθ∗(Xl)
be M and the MLE be θ̂∗.

2. Then starting from θ̂∗ we use the Brent root solver algorithm to find one solution to the
equation M − 2− log(Pθ∗(Xl)) = 0 that is less than θ̂∗ and a second that is greater than θ̂∗.
These correspond to the lower and upper two log-likelihood confidence intervals for θ̂∗.

3. We next relax the constraint that Nσ2
1 = Nσ2

2 and use the Nelder Mean simplex algorithm to
find the MLE θ̂ = (N̂σ2

1, N̂σ2
2). We found it helpful to initialize the search to θ̂∗ to increase

the speed of the search and avoid failed convergence of the simplex algorithm.

4. Finally, we use the Brent root solver algorithm to find the two log-likelihood confidence
intervals on the profile likelihood curve for Nσ2

1 and Nσ2
2 .

In a series of trials, we compared the MLEs and confidence intervals obtained using the GSL
routines versus those obtained by calculating a fine grid over values of θ. In all cases we found that
if the GSL algorithm exited successfully, the resulting MLE and confidence intervals were accurate.
For datasets on which the GSL algorithms do not converge on an MLE, manual searches using a
gridded likelihood surface is a less efficient, but feasible approach to find the MLEs and CIs.
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Figure 2: Geographic distribution of samples from Arabidopsis thaliana.
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Figure 3: Box-plot summaries of the sampling distribution of N̂σ2
1. Summaries are plotted

across a range for the number of loci and the number of copies of the minor allele observed, and the
true value of Nσ2

1 is indicated by a horizontal dashed line in each panel. (A) Brownian Birth Process
results: Each summary is based on the results of applying the importance sampling algorithm with
M = 2000, θ0 = (200, 200) and H = 2 to 500 datasets obtained by independent simulations from the
birth process model with θ = (100, 100). (B) Lattice-model results: Each summary is based on the
results of applying the importance sampling algorithm with M = 20000, θ0 = (102×104, 102×104)
and H = 2 to 500 datasets obtained by independent simulations from a 101 × 101 lattice with
σ1 = σ2 = 5, such that theta = (51× 104, 51× 104).
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2. The results are based on inference
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Power is estimated from 25 replicate simulations.
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Figure 5: Lattice model results: Effect of driving value parameter on bias. The distribu-
tion of MLEs as a function of the ratio between the driving value θ0 and the true value of θ = Nσ2.
The lattice size was 401× 401 and σ2 = 100 so that the true underlying value of Nσ2 = 32× 106.
25 replicates per value of θ0. All simulations had L = 10, j = 9.
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Figure 6: The geographic positions of the minor alleles at each of the eight loci in the
example dataset. Each circle represents a location at which the minor allele was observed in the
sample shown in Supplemental Figure 1. The geographic positions are given on a km scale with
the origin centered arbitrarily at 50N, 10E.
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